7
/ /7’-),

\
\

Jt i *.ﬂﬂ;)? e S SO\
\ — ¥a¥ » ' g *‘E /'-f ,
7 Miomret i ‘ 2 \ ;5? N
® | z: eantV - Next generation simulation prototype

'CERN, Geneva L
2UNESP, S3o Paulo , Andrei Gheata!, Guilherme Amadio?, Calebe de Paula Bianchini?3, Federico Carminati’ (project PI), Sofia Vallecorsa® and Sandro Wenzel® for the GeantV Project (geant.web.cern.ch) ~
usiin,

3Mackenzie Presbyterian University andrei.gheata@cern.ch | hpc transforms

Introduction Rethinking particle transport to leverage vectorization Backends and interfaces

High energy physics experiments such as the ones at the

Large Hadron Collider (LHC) at CERN have been using so far The scope of the project is the development of a Geometry (Fast)Physics | o Long-term maintainability of the code implies writing one
most of their worldwide distributed CPU budget - in the community supported, open-source, next generation Filters | rlers | tnput queus Stepper single version of each algorithm and specializing it for the
range of half a million CPU-years equivalent - to simulate particle transport code for HEP (High Energy Physics) “ different platforms/technologies using template
the transport through matter and the effects produced by integrating both detailed and fast simulation physics §% w\\IZ lll programming and low level optimized libraries.
particles generated in the initial collisions. These models and transport algorithms, optimized for the 8% ' et e A Xeon®Phi MicVec backend based on intrinsics is in production,
simulations are fundamental for understanding both the emerging parallel and vector architectures. e | v | SIMD inheriting from F64vecs class, allowing also to run in offload mode
detector performance and the physics outcome of such an « CERN/FNAL/BARC/UniCt-OACT joint project since 2013 - e . ,(A gccleneral vectorlzg? bakcfke[gcclI 7 mple;n;znt;:d using the Vc library
experiment. Two Intel ®PCCs (CERN via o I e code.compeng.uni-frankfurt.de/projects/vc
. penlab & UNESP) % B .

: : : 2 . I/ e Backends exist for scalar, CUDA, CILK+, Vc and can be extended to
T.he m.OSt computing-intensive .compone.nts Of. SL!Ch : - o = < - _ platform/library dependent implementations
simulations are the geometry modeling, handling navigation W, * Group particles by locality into vectors (baskets) & . e
in setups containing millions of objects, and physics, |) - Invoke geometry to determine particle position MIMD | Soicse T (Ofﬂ) B S P — e L e)
embedding state of the art knowledge of physics models. * Invoke physics models to predict stochastically a process L CEEE " adE . .

location (interactions with detector material, decays, ...) R | < Scalar interface | Vector interface
o o o . . . > templateﬂ<class Backend>
GeomEtry redeSIgn for VECtOrIZatlon) Valldate pI’OpOSEd phySICS Step agamSt geometry Ec?%kn?lgcrjl:gic:;g:lig_function(Backend::double_t input)

* Propagate vector of tracks and regroup baskets | |
// Algorithm using Backend types

VecGeom is a complete geometry modeler evolved from legacy }
geometry libraries (Geant4, USolids, ROOT TGeo). It introduces a ?tructScaIarBackend struct VectorBackend
many-particle API besides the standard scalar one, and relies on ggggg;gggfalebggrtzye_t; {Eypegegxquoug:e_vdtg)ubll%t;
templated backend abstraction to enable both platform/architecture . . . 5 static const bool ISScalar=true; static const boollsScalar=false:
specific optimizations and vector/scalar API polymorphism. The X-Ray benchmark: Can we harness the Phi for detector simulations:) fese Setic const bool I5SINMD=true
Vec(torized)Geom(etry) = Evolved Usolids S e - :
/ calability of the basketizer behaves better using OMP balanced L. :
+ many-particle API ‘ A roa);hes il the ideal curve up to native C?)res ount The X-Ray benchmark tests geometry navigation in a £ . . .
>/ . W | urve u Y u : : .
+ seometry mode/navisation f o) PP p. real detector geometry, which is one of the main O Ioadlng simulations on the KNC
. Y . / x * Expected performance degradation as more threads are f f he f h We have tested the functionality of running GeantV tasks (scalar X-Ra
| y located components ot GeantV. X-Ray comes from the tact that . onality g Gez . y
VecGeom can.run chains X a one takes a detector volume (can be the full detector) benchmark) in offload mode, in a heterogeneous environment having one host
of algorithms in vector/ The balanced model converges towards the compact model as all and scans it with virtual rays (with startin oints and 2 Xeon®© Phi cards. This was a preliminary performance measurement
SIMD vectors of particles the thread slots are filled)) , . y _ _ 9 p_ before enabling vectorization in our benchmark. The offload was split among
distFromlInside | e Tt’s worth to run Xeon Phi saturated for our app|ication d!SpOSEd In a grld) .a|0ng a given dlreCtlon and Wlth .a the host and 2 Xeon Phi cards, demonstrating good scaIabiIity.
mothervolume given resolution (input parameters). Each ray is
120 “#==Xeon(R) Phi (compact) -I-i(eon(R)Phi(baIanced) @Y eon(R) 2x E5-2650L propagated from boundary to boundary USing the T§3
daugﬁzrnféhme < Intel Ivy-Bridge (AVX) ~2.8X ~4X 4X . /,/ Scalability for X-Ray benchmark VecGeom naVigatOr, and the number of CrOSSingS is () Xeon(R) CPU 52670 § i
Intel Haswell (AVX2) ~3X ~5Xx 4% E £ Xe'on®Phi® counted until the volume is exited on the other side. (2 x 16 threads, 2.60GHz, 64GB RAM) E
coordimaton to Intel Xeon Phi (AVX-512) ~4.1 ~48 8« s |8 e (324 threads, 53 cores. 668 GODRS) |
daughter frame @ 60 - 4 £
- Overall performance for a toy detector (4 boxes, 3 tubes, 2 cones) & / _ .) :
' _ vs. to ROOT/5.34.17 (http://arxiv.org/pdf/1312.0816.pdf) 2 R A pixel is produced for : e aan e
“daughtorvel . each ray having a grey Host SN

Vectorization performance for shape navigation (left) and physics (right) on
a Xeon Phi COPRQ-7120
update step + 0 5|0 1(|)o 1510 2(|)o 2_;,0 3(|)o

boundary Speed-up on Xeon Phi(R) COPRQ-7120 P | #threads
for Compton KN model compared to Geant4

O,O/O\O/O_O Using a simplified geometry setup

8

6

5 emulating a detector tracking system
4 “0-T(Geant4)/T(Scalar) (embedded cylinders). Dispatching
3
2
1
0

value proportional to the HostiXeonpp;

b f I] ege °
HMBEr OT rossings Profiling with Intel Performance Tools

The performance tools were extensively used to understand
the current performance of GeantV. Below is an illustration
of the VTune outputs for the X-Ray benchmark done on a

#==Xeon(R) Phi (compact) eli=Xeon(R) Phi (balanced) e XEON(R) 2x E5-2650L

Speedup
=
N
o

Throughput for X-Ray benchmark

Xeon®Phi®
COPRQ-7120P

[EEN
N
o

0= T(Geant4)/T(Vector) one full scan (|mage) per task

Mic_0 Mic_1

[any
o
o

"

images/second
S 5 3 8

o—O0o—0—O0——0—0 Scalar case: Simple loop over pixels, generating a ray

10 100 500 1000 5000 10000 Ideal vectorization case: Fill vectors with N times the
umber ofracks same X-ray, using this as reference for the maximum
We have compared the scalar Haswell performance for GeantV achievable vectorization
navigation in full CMS (one of the major LHC experiments) Realistic (basket) case: Fill baskets per geometry volume : | | | | | |
geometry. Left, real time for the simulation of 10 pp events at as particles are entering (as in GeantV) 0 100 w0 e e 500 600 .
7TeV using the new VecGom package instead of the existing e B ’ ’ g ’ h.
ROOT geometry. Right side, the resident memory of the full e Gaining up to 4.5 from vectorization when making use of all vector pipelines e R — .
application after compacting the navigation states. 6 ectorization for X-Ray benchmark in the realistic basket case, approaching the ideal vectorization case (when e - = o
Real time VecGeom versus ROOT Resident memory VecGeom versus , (OMP balanced affinity) NO reg rouping of vectors is dOﬂE) . Th —l"" — S
eometr ROOT ° 1 , . . - o e I u
o0 i ! oo 5 . N o » Vector starvation starts to pop-in fast when filling more thread slots than e % , % M
| A R PR R .. -~ . N the core count, but the performance loss is not dramatic " rr—— T e
N\ =B=ROOT “VecGeom -5- 2000 - Tg“ . . . = - e S cpl Cache Usage Vectorization Usage
= g g’ « We get expected better vectorization compared to the Sandy-Bridge host . S R simaed . Vet 11C..2Com.
2 > 1500 3 , Good vectorization iNTENSItY. ruisexiim compestmandromstaictte T T
@ S 8 e — —\ ’ .
: e N I The throughput tests were currently done on a single KNC card - e
Ei 51000 % < . th read aCtIVIty and CO re usageLa:erNaviZator<(int)3>;;Com::utestezsAndProEa:atedStates 36. 119.028 10095 3447 58.889
o g VecGeom 1 g g COPRQ_71 ZOP, extended to rEerCt a 2 Ca rd Scenarlo f h b k . d DLayerNavfgator<(int)4>ffComputeStepsAndPropagatedStates 5.0. 113.333 10.038 6.868 62.143
. The throuahout berf ‘ curated KNG | valent (for thi or the X-Ray basketize e e ——to o e
O SEEEEEE S 0! - - ~ - - e throughput performance for a saturate is equivalent (for this benchmark on a Xeon Phi (61 iommammmiiinsernat an s 20
L2 5 45678 s wmubus s P S setup) to the dual Xeon E5-2650L@1.8GHz server which hosts the card. core COPRQ-7120 P) e e e o SRS oS
P LayerNavigator<(int)6>::ComputeStepsAndPropagatedStates 6.2. 105.594 5.250 6.199 52.500

Threads # Threads #

