
Host	

Host+XeonPhi	

The scope of the project is the development of a
community supported, open-source, next generation
particle transport code for HEP (High Energy Physics)
integrating both detailed and fast simulation physics
models and transport algorithms, optimized for the
emerging parallel and vector architectures.
•  CERN/FNAL/BARC/UniCt-OACT joint project since 2013
•  Two Intel®PCCs (CERN via openlab & UNESP)

Rethinking particle transport to leverage vectorization

The X-Ray benchmark: Can we harness the Phi for detector simulations?

Backends and interfaces

Long-term maintainability of the code implies writing one
single version of each algorithm and specializing it for the
di f ferent platforms/technologies using template
programming and low level optimized libraries.
•  A Xeon®Phi MicVec backend based on intrinsics is in production,

inheriting from F64vec8 class, allowing also to run in offload mode
•  A general vectorized backend is implemented using the Vc library

(code.compeng.uni-frankfurt.de/projects/vc)
•  Backends exist for scalar, CUDA, CILK+, Vc and can be extended to

platform/library dependent implementations

Offloading simulations on the KNC

The performance tools were extensively used to understand
the current performance of GeantV. Below is an illustration
of the VTune outputs for the X-Ray benchmark done on a
Xeon® Phi®.

We	
 have	
 tested	
 the	
 func4onality	
 of	
 running	
 GeantV	
 tasks	
 (scalar	
 X-­‐Ray	

benchmark)	
 in	
 offload	
 mode,	
 in	
 a	
 heterogeneous	
 environment	
 having	
 one	
 host	

and	
 2	
 Xeon©	
 Phi	
 cards.	
 This	
 was	
 a	
 preliminary	
 performance	
 measurement	

before	
 enabling	
 vectoriza4on	
 in	
 our	
 benchmark.	
 The	
 offload	
 was	
 split	
 among	

the	
 host	
 and	
 2	
 Xeon	
 Phi	
 cards,	
 demonstra4ng	
 good	
 scalability.	
 	

Scalability of the basketizer behaves better using OMP balanced
•  Approaches well the ideal curve up to native cores count
•  Expected performance degradation as more threads are

allocated
The balanced model converges towards the compact model as all
the thread slots are filled
•  It’s worth to run Xeon Phi saturated for our application

Andrei Gheata1, Guilherme Amadio2, Calebe de Paula Bianchini2,3, Federico Carminati1 (project PI), Sofia Vallecorsa1 and Sandro Wenzel1 for the GeantV Project (geant.web.cern.ch)
andrei.gheata@cern.ch

GeantV - Next generation simulation prototype

Geometry redesign for vectorization

Vector
stepper

Step
sampling

Filter neutrals
(Field)

Propagator
Step limiter

reshuffle

StepperInput queue

Geometry
Filters

(Fast)Physics
Filters

Vol1 Vol2 Vol3 Voln e+/e-

γ

Ba
sk

et
s

of
 tr

ac
ks

Scheduler
Rebasketize
&dispatch

Re
ba

sk
et

iz
e

TO SCHEDULER

VecGeom
navigator

Fu
ll

ge
om

et
ry

Si
m

pl
ifi

ed

ge
om

et
ry

Physics
sampler

Phys. Process
post-step

Secondaries

Coprocessor
broker

(offload)
MIMD

SIMD

VecGeom is a complete geometry modeler evolved from legacy
geometry libraries (Geant4, USolids, ROOT TGeo). It introduces a
many-particle API besides the standard scalar one, and relies on
templated backend abstraction to enable both platform/architecture
specific optimizations and vector/scalar API polymorphism.
Vec(torized)Geom(etry) = Evolved Usolids

+ many-particle API
+ geometry mode/navigation

The X-Ray benchmark tests geometry navigation in a
real detector geometry, which is one of the main
components of GeantV. X-Ray comes from the fact that
one takes a detector volume (can be the full detector)
and scans it with virtual rays (with starting points
disposed in a grid) along a given direction and with a
given resolution (input parameters). Each ray is
propagated from boundary to boundary using the
VecGeom navigator, and the number of crossings is
counted until the volume is exited on the other side.

Scalar case: Simple loop over pixels, generating a ray
Ideal vectorization case: Fill vectors with N times the
same X-ray, using this as reference for the maximum
achievable vectorization
Realistic (basket) case: Fill baskets per geometry volume
as particles are entering (as in GeantV)

Gaining up to 4.5 from vectorization when making use of all vector pipelines
in the realistic basket case, approaching the ideal vectorization case (when
no regrouping of vectors is done) .
•  Vector starvation starts to pop-in fast when filling more thread slots than

the core count, but the performance loss is not dramatic
•  We get expected better vectorization compared to the Sandy-Bridge host
The throughput tests were currently done on a single KNC card
C0PRQ-7120P, extended to reflect a 2 card scenario
•  The throughput performance for a saturated KNC is equivalent (for this

setup) to the dual Xeon E5-2650L@1.8GHz server which hosts the card.

•  Group particles by locality into vectors (baskets)
•  Invoke geometry to determine particle position
•  Invoke physics models to predict stochastically a process

location (interactions with detector material, decays, …)
•  Validate proposed physics step against geometry
•  Propagate vector of tracks and regroup baskets

A pixel is produced for
each ray having a grey
value proportional to the
number of crossings.

Using a simplified geometry setup
emulating a detector tracking system
(embedded cylinders). Dispatching
one full scan (image) per task

16
particles

1024
particles

SIMD
max

Intel Ivy-Bridge (AVX) ~2.8x ~4x 4x

Intel Haswell (AVX2) ~3x ~5x 4x

Intel Xeon Phi (AVX-512) ~4.1 ~4.8 8x

Overall performance for a toy detector (4 boxes, 3 tubes, 2 cones)
vs. to ROOT/5.34.17 (http://arxiv.org/pdf/1312.0816.pdf)

VecGeom can run chains
of algorithms in vector/
SIMD

0	

50	

100	

150	

200	

250	

300	

1	
 2	
 3	
 4	
 5	
 6	
 7	
 8	
 9	
 10	
 11	
 12	
 13	
 14	
 15	
 16	

Re
al
	
 &
m
e	

[s
ec
]	

Threads	
 #	

Real	
 &me	
 VecGeom	
 versus	
 ROOT	

geometry	

ROOT	
 VecGeom	

0	

500	

1000	

1500	

2000	

2500	

0	
 5	
 10	
 15	
 20	

Re
si
de

nt
	
 m

em
or
y	

[M

By
te
s]
	

Threads	
 #	

Resident	
 memory	
 VecGeom	
 versus	

ROOT	

ROOT	

VecGeom	

We have compared the scalar Haswell performance for GeantV
navigation in full CMS (one of the major LHC experiments)
geometry. Left, real time for the simulation of 10 pp events at
7TeV using the new VecGom package instead of the existing
ROOT geometry. Right side, the resident memory of the full
application after compacting the navigation states.

Profiling with Intel Performance Tools

template<class Backend>
Backend::double_t
common_distance_function(Backend::double_t input)
{
 // Algorithm using Backend types
}

struct VectorBackend
{
 typedef Vc::double_v double_t;
 typedef Vc::double_m bool_t;
 static const boolIsScalar=false;
 static const bool IsSIMD=true;
};

Vc::double_v distance(Vc::double_v);double distance(double);

struct ScalarBackend
{
 typedef double double_t;
 typedef bool bool_t;
 static const bool IsScalar=true;
 static const bool IsSIMD=false;
};

Scalar interface Vector interface

2 x Intel(R) Xeon(R) CPU E5-2670
(2 x 16 threads, 2.60GHz, 64GB RAM)

2x Xeon Phi C0QS-3120 P/A
(224 threads, 57 cores, 6GB GDDR5)

1CERN, Geneva
2UNESP, São Paulo
3Mackenzie Presbyterian University

Good vectorization intensity,
thread activity and core usage
for the X-Ray basketized
benchmark on a Xeon Phi (61
core C0PRQ-7120 P)

Introduction
High energy physics experiments such as the ones at the
Large Hadron Collider (LHC) at CERN have been using so far
most of their worldwide distributed CPU budget – in the
range of half a million CPU-years equivalent - to simulate
the transport through matter and the effects produced by
particles generated in the initial collisions. These
simulations are fundamental for understanding both the
detector performance and the physics outcome of such an
experiment.
The most computing-intensive components of such
simulations are the geometry modeling, handling navigation
in setups containing millions of objects, and physics,
embedding state of the art knowledge of physics models.

Vectorization performance for shape navigation (left) and physics (right) on
a Xeon Phi C0PRQ-7120

0	

1	

2	

3	

4	

5	

6	

0	
 50	
 100	
 150	
 200	
 250	
 300	

Sp
ee
du

p	

vs
.	
 s
ca
la
r	
 v

er
si
on

	

#threads	

Vectoriza&on	
 for	
 X-­‐Ray	
 benchmark	

(OMP	
 balanced	
 affinity)	

Xeon(R)	
 Phi	
 Vector	
 (ideal)	
 Xeon(R)	
 Phi	
 Vector	
 (basket)	
 Xeon(R)	
 2x	
 E5-­‐2650	
 (basket)	

61
	
 c
or
es
/p
hi
	

16
	
 c
or
es
/X
eo

n	

Xeon®Phi®
C0PRQ-7120 P

0	

20	

40	

60	

80	

100	

120	

0	
 50	
 100	
 150	
 200	
 250	
 300	

Sp
ee
du

p	

#threads	

Scalability	
 for	
 X-­‐Ray	
 benchmark	

Xeon(R)	
 Phi	
 (compact)	
 Xeon(R)	
 Phi	
 (balanced)	
 Xeon(R)	
 2x	
 E5-­‐2650L	

61
	
 c
or
es
/p
hi
	

16
	
 c
or
es
/X
eo

n	

Xeon®Phi®
C0PRQ-7120 P

0	

20	

40	

60	

80	

100	

120	

140	

0	
 100	
 200	
 300	
 400	
 500	
 600	

im
ag
es
/s
ec
on

d	

#threads	

Throughput	
 for	
 X-­‐Ray	
 benchmark	

Xeon(R)	
 Phi	
 (compact)	
 Xeon(R)	
 Phi	
 (balanced)	
 XEON(R)	
 2x	
 E5-­‐2650L	

Mic_0	
 Mic_1	

Xeon®Phi®
C0PRQ-7120 P

0

1

2

3

4

5

6

7

8

10
 100
 500
 1000
 5000
 10000

Sp
ee

du
p

Number of tracks

Speed-up on Xeon Phi(R) C0PRQ-7120 P
 for Compton KN model compared to Geant4

T(Geant4)/T(Scalar)

T(Geant4)/T(Vector)

