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The scope of the project is the development of a 
community supported, open-source, next generation 
particle transport code for HEP (High Energy Physics) 
integrating both detailed and fast simulation physics 
models and transport algorithms, optimized for the 
emerging parallel and vector architectures. 
•  CERN/FNAL/BARC/UniCt-OACT joint project since 2013
•  Two Intel®PCCs (CERN via openlab & UNESP)

Rethinking particle transport to leverage vectorization

The X-Ray benchmark: Can we harness the Phi for detector simulations?

Backends and interfaces

Long-term maintainability of the code implies writing one 
single version of each algorithm and specializing it for the 
di f ferent platforms/technologies using template 
programming and low level optimized libraries.
•  A Xeon®Phi MicVec backend based on intrinsics is in production, 

inheriting from F64vec8 class, allowing also to run in offload mode
•  A general vectorized backend is implemented using the Vc library 

(code.compeng.uni-frankfurt.de/projects/vc) 
•  Backends exist for scalar, CUDA, CILK+, Vc and can be extended to 

platform/library dependent implementations

Offloading simulations on the KNC

The performance tools were extensively used to understand 
the current performance of GeantV. Below is an illustration 
of the VTune outputs for the X-Ray benchmark done on a  
Xeon® Phi®.

We	   have	   tested	   the	   func4onality	   of	   running	   GeantV	   tasks	   (scalar	   X-‐Ray	  
benchmark)	  in	  offload	  mode,	  in	  a	  heterogeneous	  environment	  having	  one	  host	  
and	   2	   Xeon©	   Phi	   cards.	   This	   was	   a	   preliminary	   performance	   measurement	  
before	  enabling	   vectoriza4on	   in	  our	  benchmark.	   The	  offload	  was	   split	   among	  
the	  host	  and	  2	  Xeon	  Phi	  cards,	  demonstra4ng	  good	  scalability.	  	  

Scalability of the basketizer behaves better using OMP balanced 
•  Approaches well the ideal curve up to native cores count
•  Expected performance degradation as more threads are 

allocated
The balanced model converges towards the compact model as all 
the thread slots are filled
•  It’s worth to run Xeon Phi saturated for our application

Andrei Gheata1, Guilherme Amadio2, Calebe de Paula Bianchini2,3, Federico Carminati1 (project PI), Sofia Vallecorsa1 and Sandro Wenzel1 for the GeantV Project (geant.web.cern.ch)
andrei.gheata@cern.ch

GeantV - Next generation simulation prototype

Geometry redesign for vectorization
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VecGeom is a complete geometry modeler evolved from legacy 
geometry libraries (Geant4, USolids, ROOT TGeo). It introduces a 
many-particle API besides the standard scalar one, and relies on 
templated backend abstraction to enable both platform/architecture 
specific optimizations and vector/scalar API polymorphism.
Vec(torized)Geom(etry) =  Evolved Usolids

+ many-particle API 
+ geometry mode/navigation 

The X-Ray benchmark tests geometry navigation in a 
real detector geometry, which is one of the main 
components of GeantV. X-Ray comes from the fact that 
one takes a detector volume (can be the full detector) 
and scans it with virtual rays (with starting points 
disposed in a grid) along a given direction and with a 
given resolution (input parameters). Each ray is 
propagated from boundary to boundary using the 
VecGeom navigator, and the number of crossings is 
counted until the volume is exited on the other side. 

Scalar case: Simple loop over pixels, generating a ray
Ideal vectorization case: Fill vectors with N times the 
same X-ray, using this as reference for the maximum 
achievable vectorization
Realistic (basket) case: Fill baskets per geometry volume 
as particles are entering (as in GeantV)

Gaining up to 4.5 from vectorization when making use of all vector pipelines 
in the realistic basket case, approaching the ideal vectorization case (when 
no regrouping of vectors is done) .
•  Vector starvation starts to pop-in fast when filling more thread slots than 

the core count, but the performance loss is not dramatic 
•  We get expected better vectorization compared to the Sandy-Bridge host
The throughput tests were currently done on a single KNC card 
C0PRQ-7120P, extended to reflect a 2 card scenario
•  The throughput performance for a saturated KNC is equivalent (for this 

setup) to the dual Xeon E5-2650L@1.8GHz server which hosts the card. 

•  Group particles by locality into vectors (baskets)
•  Invoke geometry to determine particle position
•  Invoke physics models to predict stochastically a process 

location (interactions with detector material, decays, …)
•  Validate proposed physics step against geometry
•  Propagate vector of tracks and regroup baskets

A pixel is produced for 
each ray having a grey 
value proportional to the 
number of crossings.

Using a simplified geometry setup 
emulating a detector tracking system 
(embedded cylinders). Dispatching 
one full scan (image) per task

16 
particles

1024 
particles

SIMD 
max

Intel Ivy-Bridge (AVX) ~2.8x ~4x 4x

Intel Haswell (AVX2) ~3x ~5x 4x

Intel Xeon Phi (AVX-512) ~4.1 ~4.8 8x

Overall performance for a toy detector (4 boxes, 3 tubes, 2 cones) 
vs. to ROOT/5.34.17 (http://arxiv.org/pdf/1312.0816.pdf)

VecGeom can run chains 
of algorithms in vector/
SIMD
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We have compared the scalar Haswell performance for GeantV 
navigation in full CMS (one of the major LHC experiments) 
geometry. Left, real time for the simulation of 10 pp events at 
7TeV using the new VecGom package instead of the existing 
ROOT geometry. Right side, the resident memory of the full 
application after compacting the navigation states. 

Profiling with Intel Performance Tools

template<class Backend>
Backend::double_t 
common_distance_function( Backend::double_t input )
{
    // Algorithm using Backend types
}

struct VectorBackend
{
    typedef Vc::double_v double_t;
    typedef Vc::double_m bool_t;
    static const boolIsScalar=false;
    static const bool IsSIMD=true;
};

Vc::double_v distance( Vc::double_v );double distance( double );

struct ScalarBackend
{
    typedef double double_t;
    typedef bool   bool_t;
    static const bool IsScalar=true;
    static const bool IsSIMD=false;
};

Scalar interface Vector interface

2 x Intel(R) Xeon(R) CPU E5-2670
(2 x 16 threads, 2.60GHz, 64GB RAM)

2x Xeon Phi C0QS-3120 P/A 
(224 threads, 57 cores, 6GB GDDR5)

1CERN, Geneva
2UNESP, São Paulo
3Mackenzie Presbyterian University

Good vectorization intensity, 
thread activity and core usage 
for the X-Ray basketized 
benchmark on a Xeon Phi (61 
core C0PRQ-7120 P)

Introduction
High energy physics experiments such as the ones at the 
Large Hadron Collider (LHC) at CERN have been using so far 
most of their worldwide distributed CPU budget – in the 
range of half a million CPU-years equivalent - to simulate 
the transport through matter and the effects produced by  
particles generated in the initial collisions. These 
simulations are fundamental for understanding both the 
detector performance and the physics outcome of such an 
experiment.
The most computing-intensive components of such 
simulations are the geometry modeling, handling navigation 
in setups containing millions of objects, and physics, 
embedding state of the art knowledge of physics models.

Vectorization performance for shape navigation (left) and physics (right) on 
a Xeon Phi C0PRQ-7120
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Scalability	  for	  X-‐Ray	  benchmark	  
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Throughput	  for	  X-‐Ray	  benchmark	  
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Speed-up on Xeon Phi(R) C0PRQ-7120 P
 for Compton KN model compared to Geant4 

T(Geant4)/T(Scalar)

T(Geant4)/T(Vector)


