
GeantV current	status	and	
plans

ANDREI 	GHEATA FOR	THE	GEANTV PROJECT

LHC	DETECTOR	SIMULATIONS: 	STATUS, 	NEEDS	AND	PROSPECTS

JUNE	27, 	2017



GeantV	approach:	
boosting	vectors

Transport	particles	in	vectors	
(“baskets”)
◦ Filter	by	geometry	volume	or	physics	
process

Redesign	library	and	workflow	to	
target	fine	grain	parallelism

Use	an	abstraction	for	vector	
types	and	their	operations	to	
achieve	portable vectorization

2

Aim for a 3x-5x faster code, understand hard limits for 10x



Alpha	release	of	
GeantV (2017)

GeantV scheduler	version	3

Finalized	user	interfaces
◦ Test	case:	experiment	integration	with	parallel	flow	(CMSSW)

Vectorized Runge-Kutta propagator

Vectorized geometry

EM	physics	most/all	processes	for	e+/e-/gamma	in	scalar	
mode
◦ first	assessment	on	vectorization	potential

Hadronic	physics:	Glauber-Gribov cross	sections	+	low	energy	
parameterisations,	elastic	scattering

Fast	simulation	hooks	in	GeantV,	scope	definition,	integration	
and	proof	of	concept	based	on	examples

Full	hit/MC	truth	cycle	demonstrator

GPU	demonstrator

Providing	stable	interfaces	and	
allowing	experiments	to	“give	it	a	try”	
with	GeantV software

3



Beta	release	of	
GeantV (2018)

Production-quality	scheduling,	including	error	handling	at	the	
level	of	track/event,	HPC	demonstrator

Production-quality	geometry	supporting	full	features	
(construction	and	navigation)	of	Geant4	and	ROOT

MC	usage	demonstrator	based	on	realistic	use	cases.	
Integration	with	experiment	SW.

EM	physics	– full	shower	physics	(e+,	e-,	gamma),	most	CPU	
consuming	models	vectorized

Hadronic	physics:	Bertini cascade,	realistic	model	level	and	
application	level	benchmarks

Integration	of	fast	simulation	with	experimental	frameworks,	
ML-based	standalone	tool	+	demonstrators	for	concrete	cases

Providing	most	of	GeantV
features/optimisations in	terms	of	
geometry,	EM	physics	(partially	
hadronics),	I/O	and	fast	simulation.	
Allowing	to	actually	integrate	
experimental	simulations	with	GeantV
as	toolkit.

4



GeantV scheduler	upgrade
Scheduler	version 2 Scheduler	version	3

Geometry-centric	basketizing approach “Democratizing”	the	concept	of	basketizing to	allow	
for	physics	multi-particle	vectorization

SOA	container	handling:	overheads	for	
scatter/gather,	reshuffling,	concurrency

AOS	handling in	basketization,	light	SOA	on	demand	
for	dispatching	to	vector	code

“Avalanche”	memory	behavior: tracks	are	never	
released	but	only	created,	the	full	shower	has	to	be	
kept	in	memory

More	stack-like	behavior,	favoring	transporting	
secondaries/low	energy	tracks	with	priority

Basket-driven	concurrency	based	on	non-local	
queues, adding	contention	points

Thread-local	data	and	containers,	relying less	on	
common	concurrency	services	(use	my	own	data	
and	containers	as	much	as	possible)

System-driven allocation	of	resources	(threads,	
memory)

NUMA-aware allocation	of	resources,	relying	on	
topology	discovery

5



Stage	buffer

SimulationStage
virtual	DoIt(						,								)SimulationStage

Handler	1

Basketizer 1

Handler	“i”

Basketizer “I”

virtual	Select(track)
virtual	DoIt(track)

AddTrack(track,												)

scalar

vector

loop
default	behavior
to	override

e.g.	ComptonFilter::DoIt

Select	next	stage	if	different	from:	
SimulationStage::fFollowUp

SimulationStage

Stage	buffer

SimulationStage

loop

6

GeantV version	3:	A	generic	vector	flow	approach

Stage	buffer
Stage	buffer GeantTrack *

GeantPropagator

GeantTaskData

GeantPropagator

workers

Stack-like	bufferlane0 lane1 laneN…

primaries secondaries…

Processing	flow	
per	thread

Event	
server



Processing	flow	per	propagator/NUMA	node

7

Geom
etryStage

PropagationStage

PhysicsStage

Event	
server

Volume1 Volume2
Basketizer

Scalar	code

Vectorized code

Linear	
prop.

Basketizer

Field	prop.

Basketizer

Process1 Process2
BasketizerHandlers

Stage	buffers

Threads	on	same	
propagator/socket

Scalar	DoIt() Vector	DoIt()



Performance	
preliminary	V3	vs.	V2
V3	VERSUS	V2, 	MEMORY,	SCALABILITY, 	NUMA,	TUNING	KNOBS

(FOR	NOW	JUST	TABULATED	PHYSICS, 	CMS	SETUP	&	SIMPLE	
CALORIMETER)

8



Memory	control
Stack-like	control	using	a	special	buffer	
inserted	in	the	stepping	loop

• Higher	generation	secondaries
flushed	with	priority

Very	good	behavior	even	for	high	
number	of	threads/secondaries

9

0

200

400

600

800

1000

1200

1400

0 50 100 150 200 250 300

RS
S	
[M

By
te
s]

#nthreads

Memory/GeantV	version	3

CMSApp runApp	(3GeV	elec,	4E7	secondaries/event)



NUMA	
awareness
Implemented	using	hwloc >	1.8

• Enumerating	NUMA	nodes,	cores,	
CPU’s

• Threads	are	bound	to	CPU’s

A	propagator	will	use	threads	bound	to	
the	same	NUMA	node

• More	propagators	can	be	bound	to	
the	same	NUMA	node

Compact	policy	used	for	threads	on	
same	propagator,	scatter	for	
distributing	propagators	on	different	
nodes

Task	data	stage	buffers,	stack-like	
buffer,	baskets	and	tracks	bound	to	
memory	on	the	same	node	as	the	
propagator	owning	the	thread

10

13.98

13.58

13.9

12.8

12.2 12.4 12.6 12.8 13 13.2 13.4 13.6 13.8 14 14.2

SYS

NUMA

SYS

NUMA

1	
pr
op

1	
pr
op

2	
pr
op

2	
pr
op

CMSAPP,	8	THREADS	ON	A	NUMA	MACHINE	HAVING	2X8	
CORES

time[s]

Δ=8.5%

Δ=3%



Scalability
Not	as	good	as	expected

• Interaction	between	threads	lesser,	
removed	contingency	points,	SOA	
basketizing,	no	more	basket	queue

Profiling	comparison	N/2N	threads	
does	not	reveal	obvious	hotspots

• To	be	further	pursued

Memory	operations	are	high	in	the	
profile,	we	expect	picture	to	improve	
when	having	a	more	balanced	scenario	
with	more	(vector)	work	on	physics	
side.

11

0

2

4

6

8

10

12

14

16

18

20

0 5 10 15 20 25 30 35

Sp
ee
du
p

#threads

Scalability	V3,	runApp
Xeon(R)	CPU	E5-2630	v3	@	2.40GHz

ideal tpc=N Ncores numa

HYPERTHREADING

#n
co
re
s=

	1
6N
UM

A	
bo

un
da
ry



Performance	v3	
versus	v2
Relevant	improvements	in	both	single	
and	multi-threaded	mode

• Coming	mostly	from	the	increase	
of	locality	(simulation	stages)

• Removal	of	SOA	gather/scatter	
overheads

• NUMA	awareness

Yardstick	measurements	to	be	redone

12

91.08

66.17

65.31

122.4

70.59

68.14

0 20 40 60 80 100 120 140

v2

v3

v3	NUMA

V3	VERSUS	V2	SINGLE	THREAD	PERFORMANCE

runApp
CMSApp

v2

v3



Physics	goals
Full	EM	shower	simulation	in	beta	release
◦ Most	important	performance-related	component	for	simulation
◦ Demonstrate	important	gains	due	to	vectorization	+	locality	(treatment	of	baskets)

Hadronics covering	up	to	10	GeV
◦ Glauber-Gribov cross	sections	(elastic,inelastic,total)	+	low	energy	neutron/pion	parameterization	
(Barashenkov)

◦ Elastic	scattering:	rewrite	from	scratch,	converging	to	a	common	version	for	GeantV and	Geant4
◦ Bertini cascade	extraction	from	Geant4
◦ R&D	on	evolution	towards	other	promising	models	(e.g.	EPOS)
◦ The	EM	component	for	hadronic	showers	(?)
◦ Fast	simulation	allowing	functionality	as	in	current	Geant4,	plus	independent	generic	module	based	on	
ML	with	concrete	examples	

13



10

4

100 [GeV] e- in ATLAS bar. simpl. cal. : 50 layers of [2.3 mm Pb + 5.7 mm lAr]

e

≠
/e

+

: ionisation, bremsstrahlung; “: Compton, conversion

GeantV Geant4

material Edep[GeV] length [m] Edep[GeV] rms [GeV ] length [m] rms [m]

Pb 65.401 47.518 65.397 1.139 47.517 0.769

lAr 24.987 116.774 24.987 0.419 116.777 1.771

Mean number of :

gamma 38520 38515

electron 960734 960484

positron 5252 5253

charged steps 1069957 1069700

neutral steps 5176175 5175038

Mih´aly Nov´ak GeantV meeting 30-05-2017 1 / 1

Status	of	EM	shower	simulation	with	V3

14

Coming	soon:	GS	MSC	
integration,	being	now	
validated	against	Geant4



Plans	for	vectorizing physics
Goal:	vectorizing the	final	state	sampling	methods	of	the	physics	models

Handlers	will	be	automatically	created	for	each	different	model

The	post-step	action	stage	will	select	tracks	for	a	given	model

The	vector	version	of	final	state	sampling	method	of	the	models	will	be	possible	to	invoke

Performance	assessment:	switching	on/off	basketizing per	model	handler

15



User	interfaces	– GeantV impact	on	user	
framework
New	features:
◦ Multi-threaded,	multiple	events	in	flight
◦ Concurrent	scoring	
◦ Multi-particle	interfaces,	tracks	from	multiple	
events	mixed

◦ Possibility	to	vectorize time	consuming	user	
code	(digitization)

◦ Concurrent	digitization	+	merging	of	digits
◦ Multi-threaded	handling	of	data	structures
◦ Concurrent	I/O

GeantV support:
◦ UI	callbacks	similar	to	Geant4,	simplified	access	
to	state	via	track	information

◦ Task	data	whiteboard	providing	hooks	for	user-
defined	data	(no	concurrent	access	on	task	data)

◦ Hits/digits	concurrent	factory,	allowing	to	pre-
alocate and	use	custom	user	data

◦ Concurrent	I/O	mechanism	(now	in	ROOT)
◦ Vectorization	API	+	backends (VecCore)
◦ Task-based	parallelism	to	integrate	with	user	
task-based	frameworks	(e.g CMSSW)

◦ Event	slot	– based	storage:	fixed	number	of	in-
flight	events,	allowing	to	pre-allocate	data	on	a	
limited	number	of	slots

◦ User	API	for	merging	digits

16



Fast	simulation

17

S.	Vallecorsa



Next	priority	work	(end	of	summer)
	 Integration	with	RP:	full	shower	simulation	with	scheduler	V3
◦ Most	models	already	integrated	with	master				✔
◦ MSC	with	v3		✔
◦ Photoelectric
◦ Integration/testing	new	RK	propagator	(scalar/vector)
◦ Performance	tuning	V3	+	yardstick	measurements	GeantV	vs.	Geant4	extended	to	RP

	Geometry	vectorization	activation	for	v3,	fixes	to	fully	match	Geant4	raytracing	in	complex	
geometry

	 Finalize	user	interfaces

	Hadronics
◦ Include	Glauber-Gribov	cross	sections,	finish	initial	development	of	elastic	scattering	process,	evaluate	
feasibility	of	model	“extraction”	from	Geant4	(e.g.	Bertini)

18


