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GeantV	approach:	
boosting	vectors

Transport	particles	in	vectors	
(“baskets”)
◦ Filter	by	geometry	volume	or	physics	
process

Redesign	library	and	workflow	to	
target	fine	grain	parallelism

Use	an	abstraction	for	vector	
types	and	their	operations	to	
achieve	portable vectorization
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Aim for a 3x-5x faster code, understand hard limits for 10x



Alpha	release	of	
GeantV (2017)

GeantV scheduler	version	3

Finalized	user	interfaces
◦ Test	case:	experiment	integration	with	parallel	flow	(CMSSW)

Vectorized Runge-Kutta propagator

Vectorized geometry

EM	physics	most/all	processes	for	e+/e-/gamma	in	scalar	
mode
◦ first	assessment	on	vectorization	potential

Hadronic	physics:	Glauber-Gribov cross	sections	+	low	energy	
parameterisations,	elastic	scattering

Fast	simulation	hooks	in	GeantV,	scope	definition,	integration	
and	proof	of	concept	based	on	examples

Full	hit/MC	truth	cycle	demonstrator

GPU	demonstrator

Providing	stable	interfaces	and	
allowing	experiments	to	“give	it	a	try”	
with	GeantV software
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Beta	release	of	
GeantV (2018)

Production-quality	scheduling,	including	error	handling	at	the	
level	of	track/event,	HPC	demonstrator

Production-quality	geometry	supporting	full	features	
(construction	and	navigation)	of	Geant4	and	ROOT

MC	usage	demonstrator	based	on	realistic	use	cases.	
Integration	with	experiment	SW.

EM	physics	– full	shower	physics	(e+,	e-,	gamma),	most	CPU	
consuming	models	vectorized

Hadronic	physics:	Bertini cascade,	realistic	model	level	and	
application	level	benchmarks

Integration	of	fast	simulation	with	experimental	frameworks,	
ML-based	standalone	tool	+	demonstrators	for	concrete	cases

Providing	most	of	GeantV
features/optimisations in	terms	of	
geometry,	EM	physics	(partially	
hadronics),	I/O	and	fast	simulation.	
Allowing	to	actually	integrate	
experimental	simulations	with	GeantV
as	toolkit.
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GeantV scheduler	upgrade
Scheduler	version 2 Scheduler	version	3

Geometry-centric	basketizing approach “Democratizing”	the	concept	of	basketizing to	allow	
for	physics	multi-particle	vectorization

SOA	container	handling:	overheads	for	
scatter/gather,	reshuffling,	concurrency

AOS	handling in	basketization,	light	SOA	on	demand	
for	dispatching	to	vector	code

“Avalanche”	memory	behavior: tracks	are	never	
released	but	only	created,	the	full	shower	has	to	be	
kept	in	memory

More	stack-like	behavior,	favoring	transporting	
secondaries/low	energy	tracks	with	priority

Basket-driven	concurrency	based	on	non-local	
queues, adding	contention	points

Thread-local	data	and	containers,	relying less	on	
common	concurrency	services	(use	my	own	data	
and	containers	as	much	as	possible)

System-driven allocation	of	resources	(threads,	
memory)

NUMA-aware allocation	of	resources,	relying	on	
topology	discovery
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Stage	buffer

SimulationStage
virtual	DoIt(						,								)SimulationStage

Handler	1

Basketizer 1

Handler	“i”

Basketizer “I”

virtual	Select(track)
virtual	DoIt(track)

AddTrack(track,												)

scalar

vector

loop
default	behavior
to	override

e.g.	ComptonFilter::DoIt

Select	next	stage	if	different	from:	
SimulationStage::fFollowUp

SimulationStage

Stage	buffer

SimulationStage

loop
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GeantV version	3:	A	generic	vector	flow	approach

Stage	buffer
Stage	buffer GeantTrack *

GeantPropagator

GeantTaskData

GeantPropagator

workers

Stack-like	bufferlane0 lane1 laneN…

primaries secondaries…

Processing	flow	
per	thread

Event	
server



Processing	flow	per	propagator/NUMA	node
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Geom
etryStage

PropagationStage

PhysicsStage

Event	
server

Volume1 Volume2
Basketizer

Scalar	code

Vectorized code

Linear	
prop.

Basketizer

Field	prop.

Basketizer

Process1 Process2
BasketizerHandlers

Stage	buffers

Threads	on	same	
propagator/socket

Scalar	DoIt() Vector	DoIt()



Performance	
preliminary	V3	vs.	V2
V3	VERSUS	V2, 	MEMORY,	SCALABILITY, 	NUMA,	TUNING	KNOBS

(FOR	NOW	JUST	TABULATED	PHYSICS, 	CMS	SETUP	&	SIMPLE	
CALORIMETER)
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Memory	control
Stack-like	control	using	a	special	buffer	
inserted	in	the	stepping	loop

• Higher	generation	secondaries
flushed	with	priority

Very	good	behavior	even	for	high	
number	of	threads/secondaries
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NUMA	
awareness
Implemented	using	hwloc >	1.8

• Enumerating	NUMA	nodes,	cores,	
CPU’s

• Threads	are	bound	to	CPU’s

A	propagator	will	use	threads	bound	to	
the	same	NUMA	node

• More	propagators	can	be	bound	to	
the	same	NUMA	node

Compact	policy	used	for	threads	on	
same	propagator,	scatter	for	
distributing	propagators	on	different	
nodes

Task	data	stage	buffers,	stack-like	
buffer,	baskets	and	tracks	bound	to	
memory	on	the	same	node	as	the	
propagator	owning	the	thread
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Scalability
Not	as	good	as	expected

• Interaction	between	threads	lesser,	
removed	contingency	points,	SOA	
basketizing,	no	more	basket	queue

Profiling	comparison	N/2N	threads	
does	not	reveal	obvious	hotspots

• To	be	further	pursued

Memory	operations	are	high	in	the	
profile,	we	expect	picture	to	improve	
when	having	a	more	balanced	scenario	
with	more	(vector)	work	on	physics	
side.
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Performance	v3	
versus	v2
Relevant	improvements	in	both	single	
and	multi-threaded	mode

• Coming	mostly	from	the	increase	
of	locality	(simulation	stages)

• Removal	of	SOA	gather/scatter	
overheads

• NUMA	awareness

Yardstick	measurements	to	be	redone
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Physics	goals
Full	EM	shower	simulation	in	beta	release
◦ Most	important	performance-related	component	for	simulation
◦ Demonstrate	important	gains	due	to	vectorization	+	locality	(treatment	of	baskets)

Hadronics covering	up	to	10	GeV
◦ Glauber-Gribov cross	sections	(elastic,inelastic,total)	+	low	energy	neutron/pion	parameterization	
(Barashenkov)

◦ Elastic	scattering:	rewrite	from	scratch,	converging	to	a	common	version	for	GeantV and	Geant4
◦ Bertini cascade	extraction	from	Geant4
◦ R&D	on	evolution	towards	other	promising	models	(e.g.	EPOS)
◦ The	EM	component	for	hadronic	showers	(?)
◦ Fast	simulation	allowing	functionality	as	in	current	Geant4,	plus	independent	generic	module	based	on	
ML	with	concrete	examples	
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100 [GeV] e- in ATLAS bar. simpl. cal. : 50 layers of [2.3 mm Pb + 5.7 mm lAr]

e

≠
/e

+

: ionisation, bremsstrahlung; “: Compton, conversion

GeantV Geant4

material Edep[GeV] length [m] Edep[GeV] rms [GeV ] length [m] rms [m]

Pb 65.401 47.518 65.397 1.139 47.517 0.769

lAr 24.987 116.774 24.987 0.419 116.777 1.771

Mean number of :

gamma 38520 38515

electron 960734 960484

positron 5252 5253

charged steps 1069957 1069700

neutral steps 5176175 5175038

Mih´aly Nov´ak GeantV meeting 30-05-2017 1 / 1

Status	of	EM	shower	simulation	with	V3
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Coming	soon:	GS	MSC	
integration,	being	now	
validated	against	Geant4



Plans	for	vectorizing physics
Goal:	vectorizing the	final	state	sampling	methods	of	the	physics	models

Handlers	will	be	automatically	created	for	each	different	model

The	post-step	action	stage	will	select	tracks	for	a	given	model

The	vector	version	of	final	state	sampling	method	of	the	models	will	be	possible	to	invoke

Performance	assessment:	switching	on/off	basketizing per	model	handler
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User	interfaces	– GeantV impact	on	user	
framework
New	features:
◦ Multi-threaded,	multiple	events	in	flight
◦ Concurrent	scoring	
◦ Multi-particle	interfaces,	tracks	from	multiple	
events	mixed

◦ Possibility	to	vectorize time	consuming	user	
code	(digitization)

◦ Concurrent	digitization	+	merging	of	digits
◦ Multi-threaded	handling	of	data	structures
◦ Concurrent	I/O

GeantV support:
◦ UI	callbacks	similar	to	Geant4,	simplified	access	
to	state	via	track	information

◦ Task	data	whiteboard	providing	hooks	for	user-
defined	data	(no	concurrent	access	on	task	data)

◦ Hits/digits	concurrent	factory,	allowing	to	pre-
alocate and	use	custom	user	data

◦ Concurrent	I/O	mechanism	(now	in	ROOT)
◦ Vectorization	API	+	backends (VecCore)
◦ Task-based	parallelism	to	integrate	with	user	
task-based	frameworks	(e.g CMSSW)

◦ Event	slot	– based	storage:	fixed	number	of	in-
flight	events,	allowing	to	pre-allocate	data	on	a	
limited	number	of	slots

◦ User	API	for	merging	digits
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Fast	simulation
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S.	Vallecorsa



Next	priority	work	(end	of	summer)
	 Integration	with	RP:	full	shower	simulation	with	scheduler	V3
◦ Most	models	already	integrated	with	master				✔
◦ MSC	with	v3		✔
◦ Photoelectric
◦ Integration/testing	new	RK	propagator	(scalar/vector)
◦ Performance	tuning	V3	+	yardstick	measurements	GeantV	vs.	Geant4	extended	to	RP

	Geometry	vectorization	activation	for	v3,	fixes	to	fully	match	Geant4	raytracing	in	complex	
geometry

	 Finalize	user	interfaces

	Hadronics
◦ Include	Glauber-Gribov	cross	sections,	finish	initial	development	of	elastic	scattering	process,	evaluate	
feasibility	of	model	“extraction”	from	Geant4	(e.g.	Bertini)
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