
The	GeantV prototype	on	
KNL

Federico	Carminati,	Andrei	Gheata and	Sofia	Vallecorsa
for	the	GeantV team

Outline
• Introduction
• (Digression	on	vectorization	approach)
• Geometry	benchmarks:	vectorization	and	
scalability

• Profiling	+	issues
• Particle	transport	improvement
• Sub-node	clustering	+	NUMA
• Task	based	approach
• Fast	simulation	using	ML

• Improved	GeantV scheduling
• Preliminary	features

IXPUG	Annual	Spring	Conference	2017 2

The	problem

• Detailed	simulation	of	subatomic	particles	in	
detectors,	essential	for	data	analysis,	detector	
design..

• Complex	physics	and	geometry	modeling

• Heavy	computation	requirements,	massively	CPU-
bound

3
More than 50% of WLCG power for simulations

200 Computing centers in 20 countries: > 600k cores

@CERN (20% WLCG): 65k processor cores ; 30PB disk + >35PB tape
storage

IXPUG	Annual	Spring	Conference	2017

GeantV – Adapting	simulation	to	
modern	hardware

Classical	
simulation
hard	to	approach	the	
full	machine	potential

GeantV
simulation
needs	to	profit	at	
best	from	all	
processing	pipelines

• Single	event	scalar	transport
• Embarrassing	parallelism
• Cache	coherence	– low
• Vectorization	– low	(scalar	

auto-vectorization)

• Multi-event	vector	transport
• Fine	grain	parallelism
• Cache	coherence	– high
• Vectorization	– high	(explicit	

multi-particle	interfaces)

IXPUG	Annual	Spring	Conference	2017 4

Tested	hardware

Processor Code	name #cores Instruction	set

Xeon	E5-2695	v2	@	2.40GHz Ivy	Bridge 2	x	12 AVX

Xeon	E5-2630	v3	@	2.4	GHz Haswell 2	x	8 AVX2

Intel®Core i7	6700	@	3.4 GHz Skylake 4 AVX2

Xeon	Phi™	7210 @	1.3GHz KNL 64 AVX	512

IXPUG	Annual	Spring	Conference	2017 5

Compilers	used:	different	versions	of	icc,	gcc and	clang

KNL	memory	configurations:
• quadrant	+	flat	mode			- tested
• MCDRAM	in	cache	mode	– ongoing	tests
• “hot”	data	on	MCDRAM	(memkind/hbwmalloc)	– ongoing	tests

GeantV	approach:	
boosting	vectors

• Transport	particles	in	vectors	
(“baskets”)
• Filter	by	geometry	volume	or	
physics	process

• Redesign	library	and	workflow	
to	target	fine	grain	parallelism

• Use	an	abstraction	for	vector	
types	and	their	operations	to	
achieve	portable vectorization

6
Aim for a 3x-5x faster code, understand hard limits for 10x

IXPUG	Annual	Spring	Conference	2017

Why	a	vectorization	abstraction?

• Performance	with	auto-vectorization	varies	wildly	for	different	
compilers	and	versions
• Intel®	C/C++	compiler	is	significantly	ahead	of	GCC	and	Clang

• Compiler	intrinsics are	not	an	ideal	interface
• Portability	is	an	issue,	exposure	to	users	as	well…

• Vectorization	libraries	do	not	always	work	well	across	all	architectures
• e.g.	UME::SIMD	uses	scalar	emulation	for	AVX2	(not	as	good	as	KNL)

• Still	need	portable	solution	when	no	library	is	available
• Brief	digression	on	the	subject	following	next

7IXPUG	Annual	Spring	Conference	2017

VecCore library	API

IXPUG	Annual	Spring	Conference	2017 8

VecCore backends

IXPUG	Annual	Spring	Conference	2017 9

Code	Example:	Quadratic	Solver

IXPUG	Annual	Spring	Conference	2017 10

Code	Example:	Quadratic	Solver

IXPUG	Annual	Spring	Conference	2017 11

Code	Example:	Quadratic	Solver

IXPUG	Annual	Spring	Conference	2017 12

Code	Example:	Quadratic	Solver

IXPUG	Annual	Spring	Conference	2017 13

Performance	Comparison	on	Skylake

IXPUG	Annual	Spring	Conference	2017 14

Make	sure	code	
vectorizes with	
ANY	compiler!

Performance	Comparison	on	Intel	Xeon	Phi

IXPUG	Annual	Spring	Conference	2017 15

AVX512	not	well	supported	
by	vector	libraries	with	non-
Intel	compilers	in	the	initial	
version	– not	the	case	
anymore

A	real	example:	Electromagnetic	Physics	
Models

IXPUG	Annual	Spring	Conference	2017 16

Vectors	and	the	challenges

• Gather/reshuffle	data	into	SOA,	then	into	SIMD	
registers

• No	free	lunch:	need	to	keep	data	gathering	
overheads	<	vector	gains

17

GeometryRun-time	fraction	spent	
in	different	parts	of	
GeantV

24-core	dual	socket	E5-2695	v2	@	2.40GHz	(IVB).

IXPUG	Annual	Spring	Conference	2017

Geometry	navigation	on	KNL

• “X-ray”	scan	of	detector	volumes
• Trace	a	grid	of	virtual	rays	through	geometry

• Simplified	geometry	emulating	a	tracker	detector	

• Compare	GeantV basket	approach	to

• Classical	scalar	navigation	(ROOT)

• An	ideal	“vector”	case	(no	basketizing
overheads)

• AVX512	vectorization enforced	by	API	(UME:SIMD	
backend)

• ~100x	speedup	for	the	ideal	and	basket	versions

18

0

20

40

60

80

100

120

0 75 150 225 300

T(
si

ng
le

 th
re

ad
)/T

(m
ul

ti
th

re
ad

s)

NTHREADS

Speedup	vs same(1	thread)

classical ideal vector basket

Intel®	Xeon	Phi™	CPU	7210	@	1.30GHz

IXPUG	Annual	Spring	Conference	2017

Performance

• High	vectorization	intensity	achieved	for	both	
ideal	and	basketized cases
• AVX-512	brings	an	extra	factor	of	~2	to	our	
benchmark

19

0.01

0.1

1

10

0 75 150 225 300

Ab
so

lu
te

 ti
m

es
 (s

)

Nthreads

Vector ideal

AVX2 AVX512

1.60

1.70

1.80

1.90

2.00

2.10

2.20

0 75 150 225 300

T(
AV

X2
)/T

(A
VX

51
2)

Nthreads

Vector ideal

0

35

70

105

140

175

0 75 150 225 300

T(
G

ea
nt

V)
/T

(C
la

ss
ic

al
)

NTHREADS

Speedup	wrt multithreaded	classical	approach

ideal vector vs. classical basket vs. classical

GeantV gives	excellent	benefits	with	respect	
to	ROOT	in	terms	of	speedup

IXPUG	Annual	Spring	Conference	2017

Improving	the	performance
Sub-node	clustering	with	multiple	propagators

Improve	data/processing	locality	and	reduce	contention
Improved	memory	management	in	basketizing procedure	(NUMA	awareness)

TBB-based	task	based	version
Fast	simulation	using	ML/DL

IXPUG	Annual	Spring	Conference	2017 20

Sub-node	clustering

• Known	scalability	issues	of	full	GeantV	due	to	
synchronization	in	re-basketizing

• New	approach	deploying	several	propagators	
clustering	resources	at	sub-node	level

• Objectives:	improved	scalability	at	the	scale	of	KNL	and	
beyond,	address	both	many-node	and	multi-socket	
(HPC)	modes	+	non-homogenous	resources

• Implemented	recently - being tested	on	KNL

21IXPUG	Annual	Spring	Conference	2017

NUMA	awareness

• Replicate	schedulers	on	NUMA	clusters

• One	basketizer	per	NUMA	node

• libhwloc	to	detect	topology

• Use	pinning/NUMA	allocators	to	increase	locality

• Multi-propagator	mode	running	one/more	
clusters	per	quadrant

• Loose	communication	between	NUMA	nodes	at	
basketizing	step

• Implemented,	currently	being	tested

22IXPUG	Annual	Spring	Conference	2017

Multi-propagators	prototype

• Full	track	transport	and	
basketization procedure
• Simplified	calorimeter	
• Tabulated	physics	(EM	
processes	+	various	materials)
• Scalability	gets	better	by	
increasing	number	of	
propagators
• Not	final	results,	still	
fixing/optimizing

IXPUG	Annual	Spring	Conference	2017 23

Good scalability up to the number of physical cores

0

10

20

30

40

50

60

70

80

90

100

0 64 128 192 256

sp
ee
d-
up

KNL	:	old	version
KNL:	8	propagators
KNL:	4	propagators
Haswell	(E5-2630)

#c
or
es
	X
eo
n

#c
or
es
	K
N
L

#threads

Xeon	Phi	7210	@1.30	GHz
Haswell	E5-2630	2x8	@2.4	GHz

Initial	task
Top	level	task	spawning	
a	“branch”	in	TBB	tree	

of	tasks

Basketizer(s)
concurrent	service
to	regroup	tracks

Transport	task
Transports	one	basket	

for	one	step

Basket	queue
concurrent	service	
(workload	balancing)

inject	event

Flow	control	task
event	finished?	
queue	empty?	

enqueue
basket

Prioritizer
Flush	baskets/prioritize	

events	task

inspectcommand:
dump	all	your	baskets

reuse	tracks	keeping	
locality

User	Digitizers	
tasks

User	scoring

I/O	task

Task	based	GeantV
Transport	task	may	be	further	
split	into	subtasks	

event	finished?

event	finished?

24

EventServer

task-based	external	
framework

0..n

IXPUG	Annual	Spring	Conference	2017

task-based	external	
framework

TBB	tasks:	preliminary	results

• A	first	implementation	of	TBB	task-
based	approach	on	the	full	track	
transport	prototype
• TBB	preferred	over	OpenMP tasks
due	to	requirements for	integration
with user	code	and	other frameworks

• Some overheads on	Haswell/AVX2,		
not	so obvious on	KNL/AVX512
• Re-entrance	of	tasks	compared	to	the	
static	approach

25

AVX2
Intel(R)	Xeon(R)	CPU	E5-2630	v3	@	2.40GHz
2	sockets	x	8	physical	cores

Intel®	Xeon	Phi™	CPU	7210	@	1.30GHz

IXPUG	Annual	Spring	Conference	2017

• Exercise at the scale of LHC experiments (CMS)

• Full geometry + uniform magnetic field

• Tabulated physics, fixed 1MeV energy
threshold

• Full track transport and basketization
procedure

• First results on speed-up (comparison to
classical approach single-thread)

The	full	prototype

0

50

100

150

200

250

0 50 100 150 200 250 300
T(
1	
th
re
ad

)/
T(
N
	th

re
ad

s)
Nthreads

Single thread: TGV/Tclassical ≈ 4.7

IXPUG	Annual	Spring	Conference	2017 26

Full	prototype	performance	on	KNL		
• Overall	we	fill	VPUs	reasonably	well	
(for	function	calls	that	are	supposed	
to	vectorize)
• Memory	access	analysis	shows	we	are	
not	bandwidth	bound:	most	of	the	
code	runs	as	“low	utilisation”(<12	
GB/sec)	

IXPUG	Annual	Spring	Conference	2017

Total	GB/sec
Read	GB/sec
Write	GB/sec

27

• A	lot	of	copying	to	regroup	
SIMD	vectors	->	cache	misses	
+	contention,	high	memory	
usage

virtual	DoIt(,)SimulationStage

Handler	1

Basketizer 1

Handler	2	
(active)

Basketizer 2virtual	Select(track)

Executor	thread

GeantTaskData
empty	baskets	taken	
from	tread	pool

virtual	DoIt(track)

AddTrack(track,)

scalar

vector

loop
default	behavior
to	override

empty	basket	filled	
by	basketizer

St
ac
k-
lik
e	
bu

ffe
r

e.g.	ComptonFilter::DoIt

SimulationStage::fFollowUps[i]

copy	tracks

scalar	or	basketized handlers	for	
all	possible	actions	for	the	stage

SimulationStage

St
ag
e	
bu

ffe
r

SimulationStage

Simulation	stages	formalize	the	different	
steps	in	the	track	propagation	algorithm

loop

GeantV version	3:	A	generic	
vector	flow	approach

St
ag
e	
bu

ffe
r

St
ag
e	
bu

ffe
r

Ge
an
tT
ra
ck

*

Process()

IXPUG	Annual	Spring	Conference	2017 28

Version	3	preliminary	(runApp benchmark)

0

20

40

60

80

100

120

140

160

180

0 5 10 15 20 25 30 35

Ti
m
e	
[s
ec
]

#threads

runApp	/300	MeV	elec.	0.1	T	field/	version	3	vs.	version2
Intel(R)	Xeon(R)	CPU	E5-2630	v3	@	2.40	GHz

vecprot_v2 vecprot_v3 NUMA	limit HT	limit
v2

runApp:	9766	Mbytes	RSS

v3

runApp:	320	Mbytes	RSS	flat

IXPUG	Annual	Spring	Conference	2017 29

Version	3	preliminary:	VTune analysis

IXPUG	Annual	Spring	Conference	2017 30

• Hotspots,	concurrency
• “Features”	of	the	new	model

Version	3	preliminary:	VTune analysis

IXPUG	Annual	Spring	Conference	2017 31

• Cache:	L2	hit	rate	is	high	and	L2	
hit/miss	bound	is	low	 for	all	
hotspots

• Mem	bandwidth	seems	OK,	peaks	at	
only	10GB/sec,	MCDRAM	not	really	
used	in	this	mode

• Analysis	continues:
• Vectorization
• Investigating	NUMA	effects
• Hot	buffers	allocation	on	

MCDRAM
• Cache	vs.	flat	memory	model

Going	beyond	x10:	fast	simulation

• In	the	best	case	scenario	GeantV will	give	O(10)	speedup
• O(100)	is	rather	needed	to	cope	with	HL-LHC	expected	needs

• Improved,	efficient	and	accurate	fast	simulation
• Currently	available	solutions	are	detector	dependent

• Looking	for	a	generic	approach	+	user	API

• A	general	fast	simulation	tool	based	on	Machine	Learning	techniques	
• ML	techniques	are	more	and	more	performant	in	different	HEP	fields

• Optimizing	training	time	becomes	crucial

IXPUG	Annual	Spring	Conference	2017 32

• Train on full simulation
• Test	training	on	real	data

• Test different techniques/models
• Multi	Objective	regression,	Feature	
extraction

• Predictive	Clustering	Trees	&	
Standard	Perceptron	(TMVA)

• Generative	adversarial	networks	
(GANs)

• Later: embedded algorithm for hyper-
parameters tuning and meta-
optimization

IXPUG	Annual	Spring	Conference	2017 33

GAN generated:
100 GeV e

Fast	training	by	parallelizing	
(many-core,	clusters),	lower	
communication	overhead

TensorFlow +	Keras

First	3D	images	of	single	particle	showers	
in	LCD	ECAL	obtained	training	GAN

ML/DL	engine	for	fast	simulation

Conclusion

• GeantV delivers	already	a	part	of	the	expected	performance
• Many	optimization	requirements,	now	understanding	how	to	handle	most	of	
them
• GeantV dispatcher	version	3	now	ready	– tests	on	KNL	ongoing

• Additional	levels	of	locality	(NUMA)	available:	topology	detection	
already	in	GeantV,	currently	being	integrated
• Exploring	task-based	approach:		TBB-enabled	version	is		ready
• Next	step:	integration	with	physics	and	optimization

IXPUG	Annual	Spring	Conference	2017 34

Thank	you!

IXPUG	Annual	Spring	Conference	2017 35

Backup	slides
Vectorization	examples	using	VecCore abstraction	library

IXPUG	Annual	Spring	Conference	2017 36

GeantV plans	for	HPC	environments
• Standard	mode	(1	independent	process	per	node)

• Always	possible,	no-brainer
• Possible	issues	with	work	balancing	(events	take	different	time)
• Possible	issues	with	output	granularity	(merging	may	be	required)

• Multi-tier	mode	(event	servers)
• Useful	to	work	with	events	from	file,	to	handle	merging	and	workload	

balancing
• Communication	with	event	servers	via	MPI	to	get	event	id’s	in	common	files

Event	feeder

Node1
Transport Transport

Numa0 Numa1

Event	feeder

Node2
Transport Transport

Numa0 Numa1

Event	server

Nodemod[N]

Transport Transport

Numa0 Numa1

Merging	service

Event	feeder

Node1
Transport Transport

Numa0 Numa1

Event	feeder

Node2
Transport Transport

Numa0 Numa1

Event	server

Nodemod[N]

Transport Transport

Numa0 Numa1

Merging	service

Event	feeder

Node1
Transport Transport

Numa0 Numa1

Event	feeder

Node2
Transport Transport

Numa0 Numa1

Event	server

Nodemod[N]

Transport Transport

Numa0 Numa1

Merging	service

future	R&D

MPI

MPI

IXPUG	Annual	Spring	Conference	2017 37

