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THE GEANTV PROJECT
• G.Amadio (UNESP), Ananya (CERN), J.Apostolakis (CERN) , 

A.Arora (CERN), M.Bandieramonte (CERN), A.Bhattacharyya 
(BARC), C.Bianchini (UNESP), R.Brun (CERN), P.Canal 
(FNAL), F.Carminati (CERN), L.Durhem (intel), D.Elvira 
(FNAL), A.Gheata (CERN), M.Gheata (CERN), I.Goulas 
(CERN), R.Iope (UNESP), S.Jun (FNAL), G.Lima (FNAL), 
A.Mohanty (BARC), T.Nikitina (CERN), M.Novak (CERN), 
W.Pokorski (CERN), A.Ribon (CERN), R.Sehgal (BARC), 
O.Shadura (CERN), S.Vallecorsa (CERN), S.Wenzel (CERN), 
Y.Zhang (CERN)
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WHY DO WE NEED HPC?

• WLCG
• 170 computing 

centres in 42 
countries

• ~500k Cores
• O(200) PB on disk

3



MOTIVATIONS
(EVEN IF YOU ARE FAMILIAR WITH THEM)

• Performance of our code 
almost stagnant

• SIMD is key to achieve the 
performance we need (10x)

• Portability, better physics and 
optimisation will be the 
targets

• Simulation
• 50% of the LWGC cycles
• can show how to better 

exploit CPUs for complex 
applications
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THE EIGHT DIMENSIONS
• The “dimensions of performance”

• Vectors 
• Instruction Pipelining 
• Instruction Level Parallelism (ILP) 
• Hardware threading 
• Clock frequency 
• Multi-core 
• Multi-socket 
• Multi-node

Possibly running different
jobs as we do now is the
best solution

}
Gain in memory footprint 
and time-to-solution
but not in throughput

Very little gain to be 
expected and no action 
to be taken

Micro-parallelism: gain 
in throughput and 
in time-to-solution

Expected limits on performance scaling
SIMD ILP HW 

THEORY 8 4 1.35
OPTIMISED 6 1.57 1.25
HEP 1 0.8 1.25

Expected limits on performance scaling (multiplied)
SIMD ILP HW 

THEORY 8 32 43.2
OPTIMISED 6 9.43 11.79
HEP 1 0.8 1 OpenLab@CHEP12
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WHY IT IS SO DIFFICULT?
• No clear kernel
• C++XX code generation / optimisation not well understood
• Most of the technology is coming out now

• Lack of standards
• Technological risk

• Non professional coders
• Fast evolving code
• No control on hardware acquisition
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WHY SIMULATION?

• Simulation can be developed in a “system independent” way
• It can be prototyped with “little I/O” (at the beginning)
• The LHC experiments use extensively G4 as main simulation 

engine. They have invested in validation procedures
• Experiments develop their own fast MC solution as a full 

simulation  is too slow for several physics analysis
• We need an architecture where fast and full MC can be run 

together with the highest performance on parallel systems

7



WHY GEANTV?

• Simulation is largely experiment independent
• Geant4 is THE simulation code for HEP
• 50% of the WLCG cycles are used by simulation

8



WHY NOT GEANT4+?

• Extensive prototyping and analysis has convinced us that 
“vectorisation” of Geant4 was not achievable without a 
major rewrite of the code
• No hotspots (!)
• Virtual table structure very deep and complex (1990’s 

style)
• Codebase very large and non-homogeneous

• No criticism, but even the best things age
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GEANT4 PROFILING EXAMPLE: CALL MAP
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valgrind / 
kcachegrind

Anything above 10% is a pathology!



PARALLELISM EVERYWHERE AGAIN… 
BUT HOW TO EXPLOIT IT?
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?
In some sense… but not entirely

(see later)



WHAT DO WE WANT TO DO?

• Develop an all-particle transport simulation 
programme with
• A code 2-5 times faster than Geant4 
• Continue improvement of physics
• Full simulation and various fast simulation options
• Portable on different architectures (CPUs, GPUs and 

Xeon Phi’s)
• Understand the limiting factors for a (10x) 

improvement
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Scheduler
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The initial ideas sounded easy
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CHALLENGES
• Overhead from reshuffling particle lists should not offset SIMD gains
• Exploit the metal at its best, while maintaining portability

• Test from the onset on a “large” setup (LHC-like detector)
• Toy models tell us very little – complexity is the problem
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PORTABILITY
• Long-term maintainability of 

the code => write one 
single version of each 
algorithm and to specialise it 
to the platform via template 
programming and low level 
optimised libraries (Vc in 
our case)

• A Xeon Phi specific 
backend is being developed 

• Results are quite 
encouraging: maybe 
portable HPC is NOT an 
oxymoron after all…
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http://code.compeng.uni-frankfurt.de/projects/vc

template<class Backend> 
Backend::double_t  
common_distance_function( Backend::double_t input 
) 
{ 
    // Algorithm using Backend types 
}

struct VectorBackend 
{ 
    typedef Vc::double_v double_t; 
    typedef Vc::bool_v bool_t; 
    static const bool IsScalar=false; 
    static const bool IsSIMD=true; 
};

1 particle API Many particle 
API (SIMD)

Common C++ 
template functions

Vc::double_v distance( Vc::double_v );double distance( double );

Here how
“Backend” is a (trait) struct  encapsulating 
standard types/properties for “scalar, 
vector, CUDA” programming; makes 
information injection into template function 
easy

struct ScalarBackend 
{ 
    typedef double double_t; 
    typedef bool   bool_t; 
    static const bool IsScalar=true; 
    static const bool IsSIMD=false; 
};

http://code.compeng.uni-frankfurt.de/projects/vc


ANOTHER EXAMPLE POLYCONE
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Speedup factor 3.3x vs. Geant4, 7.6x vs. Root • for 
most performance critical methods, i.e.: 

• It is today possible to run Geant4 
simulations with USolids shapes replacing 
Geant4 shapes (seamless to user) 

• Geant4 10.1. ships USolids internally 
optionally one may also compile against 
external USolids installation 

• USolids source code repository: gitlab.cern.ch/
VecGeom/VecGeom 

Ugeom/VecGeom is developed by the AIDA project.  



GEOMETRY PERFORMANCE (PHI VS XEON)
• Geometry is 30-40% of the total CPU 

time in Geant4
• A library of vectorized geometry 

algorithms to take maximum advantage of 
SIMD architectures

• Substantial performance gains also in 
scalar mode

• Testing the same on on GPU
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16 
particles

1024 
particles

SIMD 
max

Intel Ivy-Bridge (AVX) ~2.8x ~4x 4x
Intel Haswell (AVX2) ~3x ~5x 4x
Intel Xeon Phi (AVX-512) ~4.1 ~4.8 8x

Overall performance for a simplified detector vs. scalar 
ROOT/5.34.17

Vectorization performance for trapezoid shape 
navigation (Xeon®Phi® C0PRQ-7120 P)

Better scalar code



GEOMETRY PERFORMANCE 
ON K20

• Speedup for different navigation 
methods of the box shape, 
normalized to scalar CPU
• Scalar (specialized/unspecialized)
• Vector
• GPU (Kepler K20)
• ROOT

• Data transfer in/out is asynchronous
• Measured only the kernel 

performance, but providing 
constant throughput can hide 
transfer latency

• The die can be saturated with both 
large track containers, running a single 
kernel, or with smaller containers 
dynamically scheduled.

• Just a baseline proving we can run 
the same code on CPU/accelerators, 
to be optimized
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PHYSICS PERFORMANCE
• Objective: a vector/accelerator friendly re-

write of physics code 
• The vectorised Compton scattering shows 

good performance gains
• Current prototype able to run an exercise  

at the scale of an LHC experiment (CMS)
• Simplified (tabulated) physics but full 

geometry, RK propagator in field
• Preliminary results hint to 

performance improvements of 
3-4
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HITS/DIGITS I/O
• “Data” mode

• Send concurrently data to one thread dealing with full 
I/O
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GeantV concurrent I/O 
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• “Buffer” mode
• Send concurrently local trees connected to 

memory files produced by workers to one 
thread dealing with merging/write to disk

• Integrating user code with a highly concurrent 
framework should not spoil performance



BASKETIZER 
PERFORMANCE

• Investigated different ways of scheduling & 
sharing work - lock free queues, ..
• Changes in scheduler require non-trivial 

effort (rewrite)
• Amdahl still large, due to high re-basketizing 

load (concurrent copying)
• O(105) baskets/second on Intel Core 

i7™ 
• Algorithm already lock free
• Rate will go down with physics processes

• Ongoing work to improve scalability
• Re-use baskets in the same thread after 

step if enough particles doing physics-
limited steps

• Clone scheduling in NUMA aware 
groups, important for many cores (e.g. 
KNL)
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Lock-free algorithm 
(memory polling)Algorithm using spinlocks
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“CLONING” THE SCHEDULER 

RA
M

_1
RA

M
_2

G
ea

nt
Pr

op
ag

at
or

 (
N

U
M

A 
m

an
ag

er
)

Sc
he

du
le

r1
Sc

he
du

le
r2

Tr
an

sp
or

t

queue1

queue2

Work stealing only when needed

CPU1

CPU2

MPI manager

25



THE X-RAY BENCHMARK

• The X-Ray benchmark tests geometry 
navigation in a real detector geometry

• X-Ray scans a module with virtual rays 
in a grid corresponding to pixels on the 
final image
• Each ray is propagated from boundary 

to boundary 
• Pixel gray level determined by number 

of crossings
• A simple geometry example (concentric 

tubes) emulating a tracker detector used for 
Xeon©Phi benchmark
• To probe the vectorized geometry 

elements + global navigation as task
• OMP parallelism + “basket” model
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OMP threads



SCALABILITY AND 
THROUGHPUT

• Better behavior using OMP balanced 
• Approaching well the ideal curve up 

to native cores count
• Balanced threading converges towards 

the compact model as all the thread 
slots are filled

• It’s worth to run Xeon Phi saturated for 
our application

• The throughput performance for a 
saturated KNC is equivalent (for this 
setup) to the dual Xeon 
E5-2650L@1.8GHz server which hosts 
the card.
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VECTOR PERFORMANCE

• Gaining up to 4.5 from vectorization 
in basketized mode
• Approaching the ideal 

vectorization case (when no 
regrouping of vectors is done) .

• Vector starvation starts when filling 
more thread slots than the core 
count
• Performance loss is not dramatic 
• Better vectorization compared to 

the Sandy-Bridge host (expected)

• Scalar case: Simple loop over pixels
• Ideal vectorization case: Fill vectors 

with N times the same X-ray
• Realistic (basket) case: Group baskets 

per geometry volume 
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PROFILING FOR THE X-RAY 
BENCHMARK

• Good vectorization intensity, thread 
activity and core usage for the X-
Ray basketized benchmark on a 
Xeon Phi (61 core C0PRQ-7120 P)

• The performance tools gave us 
good insight on the current 
performance of GeantV
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LOOKING FORWARD TO…
• … implementing a “smoking gun” demonstrator combining all prototype features 

• SIMD gains in the full CMS experiment setup
• Coprocessor broker in action: part of the full transport kernel running on Xeon®Phi® 

and GPGPU
• Scalability and NUMA awareness for rebasketizing procedure
• … achieving these just moves the target a bit further

• … testing and optimizing the workflow on KNL
• Important architecture to test how flexible our model is
• Expecting epic “fights” for scaling up the performance

• Complete the porting on GPUs and start performance optimization 
• Already working on implementing device-specific scheduling policies and addressing NUMA 

awareness 
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SUMMARY

• We are designing the next generation simulation program 
architecture
• SIMD exploitation and accelerators are the focus of this effort

• We have a prototype which looks promising toward our goal of 
a performance gain of a factor 3-5 over current software

• We plan to have a “testable” prototype in a couple of year from 
now (end 2017)

• We look forward to more communities joining our effort
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PERSPECTIVES

• Doing HPC when you do not use blas-rich codes feels like being the “poor 
relation”

• Benchmarks are of reduced relevance
• Your CPI is poor / abysmal
• There is little guidance on how to go ahead

• Moreover the “far-from-blas” community is sparse and communication is poor
• HEP for one is seriously affected by NIH syndrome

• There is a nagging feeling of reinventing the (square) wheel 
• Communication is here a major problem 

• Big data, ROOT…
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