
The path toward High Performance
Computing in High Energy Physics

Federico Carminati for the GeantV project
SISSA, Feb 24-26, 2016

THE GEANTV PROJECT
• G.Amadio (UNESP), Ananya (CERN), J.Apostolakis (CERN) ,

A.Arora (CERN), M.Bandieramonte (CERN), A.Bhattacharyya
(BARC), C.Bianchini (UNESP), R.Brun (CERN), P.Canal
(FNAL), F.Carminati (CERN), L.Durhem (intel), D.Elvira
(FNAL), A.Gheata (CERN), M.Gheata (CERN), I.Goulas
(CERN), R.Iope (UNESP), S.Jun (FNAL), G.Lima (FNAL),
A.Mohanty (BARC), T.Nikitina (CERN), M.Novak (CERN),
W.Pokorski (CERN), A.Ribon (CERN), R.Sehgal (BARC),
O.Shadura (CERN), S.Vallecorsa (CERN), S.Wenzel (CERN),
Y.Zhang (CERN)

2

WHY DO WE NEED HPC?

• WLCG
• 170 computing

centres in 42
countries

• ~500k Cores
• O(200) PB on disk

3

MOTIVATIONS
(EVEN IF YOU ARE FAMILIAR WITH THEM)

• Performance of our code
almost stagnant

• SIMD is key to achieve the
performance we need (10x)

• Portability, better physics and
optimisation will be the
targets

• Simulation
• 50% of the LWGC cycles
• can show how to better

exploit CPUs for complex
applications

4

transistors

clock

power
ILP

10-1

1

10

102

103

104

105

106

70 75 80 85 90 95 00 05 10

107

THE EIGHT DIMENSIONS
• The “dimensions of performance”

• Vectors
• Instruction Pipelining
• Instruction Level Parallelism (ILP)
• Hardware threading
• Clock frequency
• Multi-core
• Multi-socket
• Multi-node

Possibly running different
jobs as we do now is the
best solution

}
Gain in memory footprint
and time-to-solution
but not in throughput

Very little gain to be
expected and no action
to be taken

Micro-parallelism: gain
in throughput and
in time-to-solution

Expected limits on performance scaling
SIMD ILP HW

THEORY 8 4 1.35
OPTIMISED 6 1.57 1.25
HEP 1 0.8 1.25

Expected limits on performance scaling (multiplied)
SIMD ILP HW

THEORY 8 32 43.2
OPTIMISED 6 9.43 11.79
HEP 1 0.8 1 OpenLab@CHEP12

5

WHY IT IS SO DIFFICULT?
• No clear kernel
• C++XX code generation / optimisation not well understood
• Most of the technology is coming out now

• Lack of standards
• Technological risk

• Non professional coders
• Fast evolving code
• No control on hardware acquisition

6

WHY SIMULATION?

• Simulation can be developed in a “system independent” way
• It can be prototyped with “little I/O” (at the beginning)
• The LHC experiments use extensively G4 as main simulation

engine. They have invested in validation procedures
• Experiments develop their own fast MC solution as a full

simulation is too slow for several physics analysis
• We need an architecture where fast and full MC can be run

together with the highest performance on parallel systems

7

WHY GEANTV?

• Simulation is largely experiment independent
• Geant4 is THE simulation code for HEP
• 50% of the WLCG cycles are used by simulation

8

WHY NOT GEANT4+?

• Extensive prototyping and analysis has convinced us that
“vectorisation” of Geant4 was not achievable without a
major rewrite of the code
• No hotspots (!)
• Virtual table structure very deep and complex (1990’s

style)
• Codebase very large and non-homogeneous

• No criticism, but even the best things age

9

GEANT4 PROFILING EXAMPLE: CALL MAP

10

valgrind /
kcachegrind

Anything above 10% is a pathology!

PARALLELISM EVERYWHERE AGAIN…
BUT HOW TO EXPLOIT IT?

11

12

?
In some sense… but not entirely

(see later)

WHAT DO WE WANT TO DO?

• Develop an all-particle transport simulation
programme with
• A code 2-5 times faster than Geant4
• Continue improvement of physics
• Full simulation and various fast simulation options
• Portable on different architectures (CPUs, GPUs and

Xeon Phi’s)
• Understand the limiting factors for a (10x)

improvement

13

Scheduler

Geometry
navigator

Geometry
algorithms

Physics

Basket of
tracks

Basket of
tracks

x-sections

Reactions

Dispatching
MIMD
SIMD

The initial ideas sounded easy

14

Scheduler

Outputs

Geometry
Filters

Baskets

(Fast)Physics
Filters

StepperInput queue

Vector
stepper

Step sampling

Filter neutrals

(Field)
Propagator
Step limiter

reshuffle

VecGeom
navigator

Fu
ll

ge
om

et
ry

Si
m

pl
if

ie
d

ge
om

et
ry

Physics
sampler

Phys. Process
post-step

Secondaries

TO SCHEDULER

Vol1 Vol2 Vol3 Voln

e+/e-
γ

GeantV

Coproc.
broker

105 baskets/sec

15

Scheduler

Outputs

Geometry
Filters

Baskets

(Fast)Physics
Filters

StepperInput queue

Vector
stepper

Step sampling

Filter neutrals

(Field)
Propagator
Step limiter

reshuffle

VecGeom
navigator

Fu
ll

ge
om

et
ry

Si
m

pl
if

ie
d

ge
om

et
ry

Physics
sampler

Phys. Process
post-step

Secondaries

TO SCHEDULER

Vol1 Vol2 Vol3 Voln

e+/e-
γ

GeantV

Coproc.
broker

16

105 baskets/sec

CHALLENGES
• Overhead from reshuffling particle lists should not offset SIMD gains
• Exploit the metal at its best, while maintaining portability

• Test from the onset on a “large” setup (LHC-like detector)
• Toy models tell us very little – complexity is the problem

17

Scheduler

CPU GPU Phi XXXAtom

PORTABILITY
• Long-term maintainability of

the code => write one
single version of each
algorithm and to specialise it
to the platform via template
programming and low level
optimised libraries (Vc in
our case)

• A Xeon Phi specific
backend is being developed

• Results are quite
encouraging: maybe
portable HPC is NOT an
oxymoron after all…

18

http://code.compeng.uni-frankfurt.de/projects/vc

template<class Backend>
Backend::double_t
common_distance_function(Backend::double_t input
)
{
 // Algorithm using Backend types
}

struct VectorBackend
{
 typedef Vc::double_v double_t;
 typedef Vc::bool_v bool_t;
 static const bool IsScalar=false;
 static const bool IsSIMD=true;
};

1 particle API Many particle
API (SIMD)

Common C++
template functions

Vc::double_v distance(Vc::double_v);double distance(double);

Here how
“Backend” is a (trait) struct encapsulating
standard types/properties for “scalar,
vector, CUDA” programming; makes
information injection into template function
easy

struct ScalarBackend
{
 typedef double double_t;
 typedef bool bool_t;
 static const bool IsScalar=true;
 static const bool IsSIMD=false;
};

http://code.compeng.uni-frankfurt.de/projects/vc

ANOTHER EXAMPLE POLYCONE

19

Speedup factor 3.3x vs. Geant4, 7.6x vs. Root • for
most performance critical methods, i.e.:

• It is today possible to run Geant4
simulations with USolids shapes replacing
Geant4 shapes (seamless to user)

• Geant4 10.1. ships USolids internally 
optionally one may also compile against
external USolids installation

• USolids source code repository: gitlab.cern.ch/
VecGeom/VecGeom

Ugeom/VecGeom is developed by the AIDA project.

GEOMETRY PERFORMANCE (PHI VS XEON)
• Geometry is 30-40% of the total CPU

time in Geant4
• A library of vectorized geometry

algorithms to take maximum advantage of
SIMD architectures

• Substantial performance gains also in
scalar mode

• Testing the same on on GPU

20

16
particles

1024
particles

SIMD
max

Intel Ivy-Bridge (AVX) ~2.8x ~4x 4x
Intel Haswell (AVX2) ~3x ~5x 4x
Intel Xeon Phi (AVX-512) ~4.1 ~4.8 8x

Overall performance for a simplified detector vs. scalar
ROOT/5.34.17

Vectorization performance for trapezoid shape
navigation (Xeon®Phi® C0PRQ-7120 P)

Better scalar code

GEOMETRY PERFORMANCE
ON K20

• Speedup for different navigation
methods of the box shape,
normalized to scalar CPU
• Scalar (specialized/unspecialized)
• Vector
• GPU (Kepler K20)
• ROOT

• Data transfer in/out is asynchronous
• Measured only the kernel

performance, but providing
constant throughput can hide
transfer latency

• The die can be saturated with both
large track containers, running a single
kernel, or with smaller containers
dynamically scheduled.

• Just a baseline proving we can run
the same code on CPU/accelerators,
to be optimized

21

PHYSICS PERFORMANCE
• Objective: a vector/accelerator friendly re-

write of physics code
• The vectorised Compton scattering shows

good performance gains
• Current prototype able to run an exercise

at the scale of an LHC experiment (CMS)
• Simplified (tabulated) physics but full

geometry, RK propagator in field
• Preliminary results hint to

performance improvements of
3-4

22

Sp
ee

du
p

0

1.0938

2.1875

3.2813

4.375

5.4688

6.5625

7.6563

8.75

Number of tracks
10 100 500 1000 5000 10000

T(Geant4)/T(Scalar)
T(Geant4)/T(Vector)

CMS Ecal
Alias sampling performance on a Kepler K30
(Soon’ Y. - EM physics models on parallel computing
architectures)

Speed-up on Xeon Phi(R) C0PRQ-7120
 for Compton KN model compared to Geant4

HITS/DIGITS I/O
• “Data” mode

• Send concurrently data to one thread dealing with full
I/O

23

GeantV concurrent I/O
8 data producer threads + 1 I/O thread

re
la

tiv
e

tim
e

ov
er

he
ad

 w
rt

no
 I/

O

0

1

2

3

4

Throughput [MB/s]

0 30 60 90 120

Data I/O (old)
Buffer I/O (new)

• “Buffer” mode
• Send concurrently local trees connected to

memory files produced by workers to one
thread dealing with merging/write to disk

• Integrating user code with a highly concurrent
framework should not spoil performance

BASKETIZER
PERFORMANCE

• Investigated different ways of scheduling &
sharing work - lock free queues, ..
• Changes in scheduler require non-trivial

effort (rewrite)
• Amdahl still large, due to high re-basketizing

load (concurrent copying)
• O(105) baskets/second on Intel Core

i7™
• Algorithm already lock free
• Rate will go down with physics processes

• Ongoing work to improve scalability
• Re-use baskets in the same thread after

step if enough particles doing physics-
limited steps

• Clone scheduling in NUMA aware
groups, important for many cores (e.g.
KNL)

24

Lock-free algorithm
(memory polling)Algorithm using spinlocks

Rebasketizing
2x Intel(R) Xeon(R) CPU E5-2630 v3 @ 2.40GHz

RA
M

_1
RA

M
_2

G
ea

nt
Pr

op
a

ga
to

r (
N

UM
A

m

a
na

ge
r) Sc

he
d

ul
er

1
Sc

he
d

ul
er

2 Tr
an

sp
or

tqueue1

queue2

Work stealing only
when needed

CPU1

CPU2

MPI manager

“CLONING” THE SCHEDULER

RA
M

_1
RA

M
_2

G
ea

nt
Pr

op
ag

at
or

 (
N

U
M

A
m

an
ag

er
)

Sc
he

du
le

r1
Sc

he
du

le
r2

Tr
an

sp
or

t

queue1

queue2

Work stealing only when needed

CPU1

CPU2

MPI manager

25

THE X-RAY BENCHMARK

• The X-Ray benchmark tests geometry
navigation in a real detector geometry

• X-Ray scans a module with virtual rays
in a grid corresponding to pixels on the
final image
• Each ray is propagated from boundary

to boundary
• Pixel gray level determined by number

of crossings
• A simple geometry example (concentric

tubes) emulating a tracker detector used for
Xeon©Phi benchmark
• To probe the vectorized geometry

elements + global navigation as task
• OMP parallelism + “basket” model

26

OMP threads

SCALABILITY AND
THROUGHPUT

• Better behavior using OMP balanced
• Approaching well the ideal curve up

to native cores count
• Balanced threading converges towards

the compact model as all the thread
slots are filled

• It’s worth to run Xeon Phi saturated for
our application

• The throughput performance for a
saturated KNC is equivalent (for this
setup) to the dual Xeon
E5-2650L@1.8GHz server which hosts
the card.

27

VECTOR PERFORMANCE

• Gaining up to 4.5 from vectorization
in basketized mode
• Approaching the ideal

vectorization case (when no
regrouping of vectors is done) .

• Vector starvation starts when filling
more thread slots than the core
count
• Performance loss is not dramatic
• Better vectorization compared to

the Sandy-Bridge host (expected)

• Scalar case: Simple loop over pixels
• Ideal vectorization case: Fill vectors

with N times the same X-ray
• Realistic (basket) case: Group baskets

per geometry volume

28

PROFILING FOR THE X-RAY
BENCHMARK

• Good vectorization intensity, thread
activity and core usage for the X-
Ray basketized benchmark on a
Xeon Phi (61 core C0PRQ-7120 P)

• The performance tools gave us
good insight on the current
performance of GeantV

29

LOOKING FORWARD TO…
• … implementing a “smoking gun” demonstrator combining all prototype features

• SIMD gains in the full CMS experiment setup
• Coprocessor broker in action: part of the full transport kernel running on Xeon®Phi®

and GPGPU
• Scalability and NUMA awareness for rebasketizing procedure
• … achieving these just moves the target a bit further

• … testing and optimizing the workflow on KNL
• Important architecture to test how flexible our model is
• Expecting epic “fights” for scaling up the performance

• Complete the porting on GPUs and start performance optimization
• Already working on implementing device-specific scheduling policies and addressing NUMA

awareness

30

SUMMARY

• We are designing the next generation simulation program
architecture
• SIMD exploitation and accelerators are the focus of this effort

• We have a prototype which looks promising toward our goal of
a performance gain of a factor 3-5 over current software

• We plan to have a “testable” prototype in a couple of year from
now (end 2017)

• We look forward to more communities joining our effort

31

PERSPECTIVES

• Doing HPC when you do not use blas-rich codes feels like being the “poor
relation”

• Benchmarks are of reduced relevance
• Your CPI is poor / abysmal
• There is little guidance on how to go ahead

• Moreover the “far-from-blas” community is sparse and communication is poor
• HEP for one is seriously affected by NIH syndrome

• There is a nagging feeling of reinventing the (square) wheel
• Communication is here a major problem

• Big data, ROOT…

32

