The path toward High Performance
Computing in High Energy Physics

Federico Carminati for the GeantV project
SISSA REIE Vvl MO G

0)

kS

Geant.> CERN

. , ‘b
AN \ -- intel
@) e @ @ v - [

-...--——--.- v

THE GEANTV PROJECT

- G.Amadio (UNESP), Ananya (CERN),] Apostolakis (CERN) |

A.Arora (CERN), M.Bandieramonte (CERN), A.Bhattacharyya
(BARC), C.Bianchini (UNESP), R.Brun (CERN), PCanal
(FNAL), FCarminati (CERN), L.Durhem (intel), D.Elvira
(FNAL), A.Gheata (CERN), M.Gheata (CERN), [.Goulas
eERN AR ope (UINESP), Sjun (FNALY, Gilinna (S
A.Mohanty (BARC), I.Nikitina (CERN), M.Novak (CERN),
W.Pokorski (CERN), A.Ribon (CERN), R.Sehgal (BARC),
O.Shadura (CERN), S.Vallecorsa (CERN), 5.Wenzel (CERN),
Y.Zhang (CERN)

Y
x
Geant >

e

vy DO WE NEED e

VO G

» | /0 computing
centres in 42
countries

g 0k Cores
» O(200) PB on disk

MOTIVATIONS

(EVENFTOU ARE FANMILIARNVA NSS! S

107

Performance of our code 10°
almost stagnant 105

SIMD 1s key to achieve the
performance we need (|0x)

Portability, better physics and 103
optimisation will be the
targets

Simulation 10
50% of the LWGC cycles

can show how to better
explort CPUs for complex 10
applications

104

102

1

Dual-Core Itanium 2
Intel CPU Trends
(sources: Intel, Wikipedia, K. Olukotun)

tranS|stors

/0 75 80 85 90 95 00 05 10

e

Seou
..4

THE EIGHT DIMENSIONS

* The "dimensions of performance”

* Vectors _ _ _
Micro-parallelism: gain

— in throughput and
In time-to-solution

* Instruction Pipelining
* Instruction Level Parallelism (ILP)

* Hardware threading

» Clock frequency — Very little gain to be
N e ore T > expected and no action
to be taken

* Multi-socket
« Multi-node —

Expected limits on performance scalina

Gain in memory footprint
and time-to-solution

SIMD ILP HW but not in throughput
THEORY 8 4 1.35
OPTIMISED 6 1.57 1.25 . : :
HEP 1 0.8 1.25 Possibly running different
Expected limits on performance scaling (multiplied) jObS as we do now Is the
SIMD ILP HW :
THEORY 8 32 43.2 best solution
CH)EE'M'SED ? gég 11'7? OpenLab@CHEP12

e

5 CERN

i 1 S S0O DIFFICUSS

SNl@iclear kernel
» C++XX code generation / optimisation not well understood
» Most of the technology Is coming out now
» Lack of standards
* [echnological risk
» Non professional coders
* Fast evolving code

¢ - No control on hardware acquisition

6

Y
x
Geant .2

 We need an architec

WHY SIMULATION!?

* [t can be prototyped

* Simulation can be developed in a “system independent” way

with “little /O™ (at the beginning)

« The LHC experiments use extensively G4 as main simulation

engine. [hey have Invested In validation procedures

S periments develop

their own fast MC solution as a full

simulation s too slow for several physics analysis

‘ure where fast and full MC can be run

together with the hig

nest performance on parallel systems

A

v

WHY GEANTV!

» Simulation is largely experiment independent

» Geant4 I1s T HE simulation code for HEP
» 50% of the WLCG cycles are used by simulation

2? d
Geant.s CERN

WHY NOT GEANT4+!

* Extensive prototyping and analysis has convinced us that
“vectorisation” of Geant4 was not achievable without a
major rewrite of the code

No hotspots (/)

Virtual table structure very deep and complex (1990's
style)

Codebase very large and non-homogeneous
* No criticism, but even the best things age

Y
x
Geant .2

GEANT4 PROFILING EXAMPLE CALL MAP

valgrind /
kcachegrind

' l—r‘“rr‘F x|

2141 aatae

Anything above 10% is a pathology!

Ly
s

cl‘illll -";' | O

PARALLELISM EVERYWHERE AGAIN. ..
U HOW 1O EXPLOFE S

Ph+Pb @ sqri(s) = 2.76 ATeV

2010-11.08 11:30:46
Fill : 1482

‘ Run: 137124
Event : O0x00000000D03BBEG9]

y
-y
Geant.” CERN

0

In some sense... but not entirely
(see later)

0

| 2 CERN

WHAIT DO WEWANT 10 DO/

* Develop an all-particle transport simulation
brogramme with

A code 2-5 times faster than Geant4
Continue iImprovement of physics
-ull simulation and various fast simulation options
Portable on different architectures (CPUs, GPUs and
Xeon Phi’s)
 Understand the limriting factors for a (10x)
o improvement

A

The initial ideas sounded easy

Basket of Basket of
&_tracks \4\ &_traeks f
‘ Dispatching

\ £ \ MIMD

/Scheduler \—ﬁ i

: SIMD

Geometry) |
navigator 4\ Physics
:§ N\ ()

\
Geometry i\ xcoctions &_
talgorlthms e aasanmne=—ul
| QOQAD J | [Reactlons l
Q ‘ @ 0 ' ‘!‘ e o o S T iy e e e T ‘ \/‘/

PVoo v R

Geometry
Filters
et/e
Vol, | Vol, | Vol; | Vol, Y
Baskets

105 baskets/sec

-an

Scheduler

0@

% . 3
Geant >

.
..4

(Fast)Physics
Filters

GeantV

Input queue

Stepper

broker

i

Vector

stepper

Step sampling

Filter neutrals

(Field)
Propagator

Step limiter
reshuffle

VecGeom Physics
navigator Sampler

Full
geometry
Simplified

geometry

Phys. Process
post-step

CERN

Geometry
Filters
et/e
Vol, | Vol, | Vol; | Vol, Y
Baskets

105 baskets/sec

-an

Scheduler

0@

% . 3
Geant >

.
..4

(Fast)Physics
Filters

GeantV

Input queue

Stepper

broker

i

Vector

stepper

Step sampling

Filter neutrals

(Field)
Propagator

Step limiter
reshuffle

VecGeom Physics
navigator Sampler

Full
geometry
Simplified

geometry

Phys. Process
post-step

CERN

W

) y
4

N\
K
Geant .2

CHALLENGES

» Overhead from reshuffling particle lists should not offset SIMD gains
» Exploit the metal at its best, while maintaining portability

v

» Jest from the onset on a “large” setup (LHC-like detector)

- Toy models tell us very little — complexity Is the problem

e

http://code.compeng.uni-frankfurt.de/projects/vc

PORTABILITY

* Long-term maintainability of
the code => write one
single version of each
algorithm and to specialise it
to the platform via template
programming and low level
optimised libraries (Vc In
our case)

» A Xeon Phi specific
backend Is being developed

- Results are quite

encouragm% maybe
portable HPC 1s NOT an
oxymoron after all...

struct ScalarBackend

typedef double double_t;
typedef bool bool_t;

static const bool IsScalar=true;
static const bool IsSIMD=false;

5

had >

1 particle API

Here how

“Backend” is a (trait) struct encapsulating
standard types/properties for “scalar,
vector, CUDA” programming; makes
information injection into template function
easy

Many particle
ABI (SIMD)
Common C++
template functions

double distance(double);

\

Vc::double_v distance(Vc::double_v);
template<class Backend>

Backend::double _t

common_distance_function(Backend::double_t input

{ /I Algorithm using Backend types

struct VectorBackend

typedef VVc::double_v double_t;
typedef Vc::bool_v bool_t;
static const bool IsScalar=false;
static const bool IsSIMD=true;

5

e

0

CERN

http://code.compeng.uni-frankfurt.de/projects/vc

ANOTHER EXAMPLE POLYCONE

Speedup factor 3.3x vs. Geant4, 7.6x vs. Root - for

most performance critical methods, i.e.:

It is today possible to run Geant4
simulations with USolids shapes replacing
Geant4 shapes (seamless to user)

Inside Distance ToOut DistanceToln

Padomance of mathods &1 10i0er DOlyCOne-38-380-pert
2600 — — -

Vir-GeamV‘?

—— e Geant4 10.1. ships USolids internally
= optionally one may also compile against
: external USolids installation
:
£ 100
:

E oo Revised UPolycone performance
I Scalability for Distance ToOut()
rsice Distance ToOut DstanceToln Nomal Satety FromOusice Safety Fromingioe | L
USolids source code repository: gitlab.cern.ch/ "
VecGeom/VecGeom

Ugeom/VecGeom is developed by the AIDA project. CERN

EIE®METRT PERFORMANCE (PRI SOSEE N

» Geometry is 30-40% of the total CPU
time in Geant4

e
algorithms to take maximum advantage of particles | _particles | _max

. Intel Ivy-Bridge (AVX) ~2.8X
Sl M D arChlteCtureS Intel Haswell (AVX2) ~3X ~5X 4x
Intel Xeon Phi (AVX-512) ~4.1 ~4.8 8x

» Substantial performance gains also In

Overall performance for a simplified detector vs. scalar
scalar mode

ROOT/5.34.17

* [esting the same on on GPU

distFrominside

mothervolume

pick next
daughter volume

time units

o
transform i

coordinates to
daughter frame
excellent
SIMD vector

performance distToOutside
B daughtervol .l
=]
] USolds DistanceToln SafetyToln In-or-Out?
B VecGeom SalrAP ¥ SIMD.)

total —
‘ B VecGoom MarpTack A 3, X 7x 13.62x ;Ptjgﬁg:mp L Ve e — —— ot
boundary Vectorization performance for trapezoid shope/\

navigation (Xeon®Phi® COPRQ-7120 P) é)_/

Geant > e CERN

s %
..4

GEOMETRY PERFORMANCE
ON K20

* Speedup for different navigation safetyToln
methods of the box shape, id ——]
normalized to scalar CP | BRI aas
« Scalar (specialized/unspecialized) " S
. teaaos ;?;i;;;&;ﬁ;

« GPU (Kepler K20)
- ROOT

« Data transfer in/out is asynchronous

* Measured only the kernel
performance, but providing
constant throughput can hide
transfer latency

 The die can be saturated with both
large track containers, running a single
kernel, or with smaller containers
dynamically scheduled.

» Just a baseline proving we can run
the same code on CPU/accelerators,
to be optimized

2

3
Geant .2

FEIY SICS PERFORMAINESS

8.75
« Objective: a vector/accelerator friendly re- Speed-up on Xeon Phi(R) COPRQ-7120

: : 7.6563 for Compton KN model compared to Geant4
write of physics code

6.5625
« The vectorised Compton scattering shows 0’/\/.._—)

: 5.4688 O T(Geant4)/T(Scalar)
good performance gains o T(Geantd)/T(Vector)

Speedup

4.375
« Current prototype able to run an exercise R
at the scale of an LHC experiment (CMS) |
+ Simplified (tabulated) physics but ful i
seometry, RK propagator in field g
* Preliminary results hint to s 0 w0 T

performance improvements of

— w. Numberoftracks
3 -4 g ==X eON-ES-2050~-Keépléw- K30 -~ = - o mm o
8 : A’ias (E=2-20"‘_’e‘17) .." * ‘
Proton energy deposit density/primary in ECAL - ~ Y_;.' 22
5 10 O~ Géoarsé “g 1(); A / ottt et o
i —— ""-0, =4 GeantV-TGeo Tu =
2 ® S . —a— KleinNishina
~ O ,
¥ E | ~ —e— BetheHeitler
é = —e— SauterGavrila
3 N I . ~ —# MollerBhabha
B o = e g SeltzerBerger
10° y | 10* 10"
W ‘ C MS ECC” ‘ Coresin SMX Cores in GPU Namiberof Tracks

Alias sampling performance on a Kepler K30 " i

.. . (Soon 1.+ EM whysics miae S, é
Mo
- % architectures)

CERN

an

~ . :
Geant >

Maomentum [MeVic) 10

BT S/ DIGHTS 1788

SeRDaiasmode i | |
* Integrating user code with a highly concurrent
* Send concurrently data to one thread dealing with full framework should not spoil performance
/O

GeantV concurrent I/O

TransportTracks Threa ‘ 8 data producer threads + 1 1/0 thread
Qm‘ “
UserHit

Tl GeantBlock

3 | | 23
O : E
0
.(C; ’ Output Thread T
A e a = 4 Data /O (old)
Block size ¢ % 2 @ Buffer1/O (new)
o
- £
Number of slots 3
| i 2 —
k)
] J o
« “Buffer’ mode
0 : : : .
o) 30 60 90 120

» Send concurrently local trees connected to
p memory files produced by workers to one

thread dealing with merging/write to disk Throughpuies e

A

Geant.» 23 CERN

W

Geant.s

BASKETIZER
PERFORMANC

Investigated different ways of scheduling &
sharing work - lock free queues, ..

» Changes in scheduler require non-trivial
effort (rewrite)

Amdahl still large, due to high re-basketizing
load (concurrent copying)

. C7) | 0°) baskets/second on Intel Core
|

« Algorithm already lock free
« Rate will go down with physics processes

Ongoing work to improve scalability

* Re-use baskets in the same thread after
step If enough particles doing physics-
imrted steps

» Clone scheduling in NUMA aware

IKI)E s, Important for many cores (e.g.

Dl

__Amdahl law |
i['.;p

-
-

1

1 10 10°
Rebasketizing Y
2x In’reI(R)ty)&%o n(R) CPU E5-2630 v3 @ 2.40GHz
nu ty with number of threads
g | 2 |
§5 | 4 w’ L <
H 0 1114 1 Lock free algorithm

Algorithm using spinlocks =4 (memory polling)

ol.,“,u...... S TN TP FS S EVT PR P e s S FTFI FITISTTIITTR FSTE FTFI TS SETE SRR FNva ST s
T2 4 6 8 10 12 14 16 18 20 22 24

threads

2 4 6 B8 10 12 14 16 18 20 22 24
& hvaads

Schedulerl

queuel

Work stealing only
when needed

Transport

queue?

GeantPropagator (NUMA
manager)

Scheduler2

MPI manager

0

>N

CERN

B CONING | HE SCHEDGISE.

Work stealing only when needed

Scheduler1

(-
)
N
(o]
c
©
-
<
>
>
=
-
(@)
-
©
on
©
Q.
(@)
sl
(a8
-
c
©
(]
O

Scheduler2

o MPIl manager

N\ A ¢
s y
4

\‘h‘illl' |":' 25 CERN

0

THE X-RAY BENCHMARK

The X-Ray benchmark tests geometry
navigation In a real detector geometry

X-Ray scans a module with virtual rays

In a grid corresponding to pixels on the
final image

Each ray Is propagated from boundary
to boundary

Pixel gray level determined by number
of crossings

A simple geometry example (concentric

tubes) emulating a tracker detector used for
Xeon©Phi benchmark OMP threads

lo probe the vectorized geometry
elements + global navigation as task

W « OMP parallelism + “basket” model

y
1
Geant.”

26

SCALABILITY AND
THROUGHPUT

= xeon{R) Phi (compact) " Xaon(R) Phi (balanced) e Xeon(R) 2x E5-2650L

120

,'écalability for X-Ray benchmark

» Better behavior using OMP balanced

« Approaching well the ideal curve up
to native cores count

» Balanced threading converges towards
the compact model as all the thread

slots are filled R m wm W = ™
#threads
* It's worth to run Xeon Phi saturated for [R R i
our application oo €5.2650.81 80z

* The throughput performance for a
saturated KNC is equivalent (for this
setup) to the dual Xeon
E5-2650L@ | .8GHz server which hosts
the card.

¥eou
"44‘

VECTOR PERFORMANCE

w———Xeon(R) Phi Vector (ideal) =" Xeon(R) Phi Vector (basket) = Xeon(R) 2x E5-2650 (basket)

i Vectorization for X-Ray benchmark
(OMP balanced affinity)

| -/ \\ /‘__.__.

» Gaining up to 4.5 from vectorization
In basketized mode

« Approaching the ideal
vectorization case (when no

regrouping of vectors is done) .

'A
>
:

)
|

n

Speedup vs. scalar version
w
2 | 1.
3

i
18 cores/Xeon

o

» Vector starvation starts when filling ° : T s T
more thread slots than the core
count . : Simple loop over pixels
* Performance loss is not dramatic * Ideal vectorization case: Fill vectors
» Better vectorization compared to with N times the same X-ray
the Sandy-Bridge host (expected) - Realistic (basket) case: Group baskets
op per geometry volume
~
&

Geant .-»;' 28 CERN

PROFILING FOR THE X-RAY
BENCHMARK

* Good vectorization intensity, thread :”" _=_—
activity and core usage for the X- EEE" E— - =
Ray basketized benchmark on a == g
Xeon Phi (61 core COPRO-7 120 P) [e i

 The performance tools gave us : =——0Kx— = E ;
good Insight on the current e : —

¥ LayerNavigatoe< it Campure Stepi AnaiTopagateditates s «on 13000 o10s 32.143

e r’f‘o rm a n C e Of G e a n-t\/ ¥ LayerNavigator<int]3> ComptcitogmmAndMopagatodistes 33 22100 11431 e 4280
¥ WordaNavgaton< oot |1 > -Compte SeprAndPropagatedisates a8 238012 11437 18

82004

¥ LaperNavigatoe< (ire) ComputeStepr Anciopageteditates r2 133933 10343 83 171.333
H:.erﬂ:nga!::ﬂmu » o CamptettopnAndMopagatoditates i 112000 10093 14347 so.00%
¥LayerNavigator<rt > ComputeitoprAncPropagateditates 0 13220 10038 Gaca &
¥ LayerNavigator<Ort 12 > . ComputeSteprAncProgagateditates a4 1082%0 9830 1\ 37 833
P LayerNavigators (18] 1+ CompaeStegnAndMopagetoditates 03 107.808 ase? 7112 31
¥ vecgeonm: o TetRtiities: Circie®ajectongirternechoncvecgeom cxx 4.6 »naIem 7% 10222 e
Lesisar TR sarenss, - - coes = - s - cesm - S - et v R - - R R
=31=
=
1= =
- =i

Seant.s” 79 CERN

L OOKING FORWARD 10O...

.. Implementing a “smoking gun” demonstrator combining all prototype features
« SIMD gains in the full CMS experiment setup

» Coprocessor broker in action: part of the full transport kernel running on Xeon®Phi®
and GPGPU

» Scalability and NUMA awareness for rebasketizing procedure
* ... achieving these just moves the target a bit further
* ... testing and optimizing the workflow on KNL
* Important archrtecture to test how flexible our model is
* Expecting epic “fights” for scaling up the performance
» Complete the porting on GPUs and start performance optimization

wAlready working on implementing device-specific scheduling policies and addressing NUMA

‘ dAWdAlreness

SO YIRS

* We are designing the next generation simulation program
archrtecture

+ SIMD exploritation and accelerators are the focus of this effort

* We have a prototype which looks promising toward our goal of
a performance gain of a factor 3-5 over current software

* We plan to have a "testable” prototype In a couple of year from
now (end 201 7)

e We look forward to more communities joining our effort

A

31

PERSPECTIVES

Doing HPC when you do not use blas-rich codes feels like being the “poor
relation”

 Benchmarks are of reduced relevance
* Your CPlis poor / abysmal

 There is little guidance on how to go ahead

Moreover the “far-from-blas’” community Is sparse and communication Is poor

» HEP for one is seriously affected by NIH syndrome

There Is a nagging feeling of reinventing the (square) wheel

» Communication Is here a major problem

& - Big data, ROOT...

Y
$

Geant w;' 3 2

