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Monte Carlo Simulation: Why

O Detailed simulation of subatomic particles is essential for
data analysis, detector design

O Understand how detector design affect
measurements and physics

O Use simulation to correct for inefficiencies,
inaccuracies, unknowns.

O The theory models to compare data against.

A good simulation demonstrates that we understand the detectors
and the physics we are studying



The problem

O Complex physics and geometry modeling
O Some physics process are extremely rare!l

O Heavy computation requirements, massively CPU-bound

O Already now more than 50% of WLCG power is used for simulations

é’ 200 Computing centers in 20 countries: > 600k cores
A @CERN (20% WLCG): 65k processor cores ; 30PB disk + >35PB tape storage

By 2025 with the High Luminosity LHC run we will have to run simulation 100x faster!



GeantV: Adapting simulation to modern
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Some benchmarks on Intel Xeon Phi
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Going beyond 10x: fast simulation

O In the best case scenario GeantV will give 10x speedup — not
enough

O Improved, efficient and accurate fast simulation based on Deep
Learning techniques

Test on most
time consuming
detectors:
calorimeters




Generative Adversarial Networks

arXiv:1406.2661v1

O Mostly used for computer vision e |
(Goodfellow et al, 2014) images
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O Simultaneously train two models:

D

O Generative model G to capture the
data distribution

Latent random variable

O Discriminative model D to distinguish
real data from G data (“catch G”)

O The training procedure for G is to

maximize the probability of D making a
mistake




Training GANSs Is a many steps process:

2. Train the chained GAN

1. Sample noise and generate images with
the Generator.

2. Tthe Discriminator to recognize Generator
data from Real data.

3. Push the chained Generator and
gisgr:rimino’ror to tell you that it is Real
ata.

|, Discriminator weights are frozen.

4. Back feed to Discriminator and repeat for
as many epochs as needed

1. Train the discriminator
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3D GAN for parficle detectors

O Treat energy deposits in cells as 3D image

O Generator and Discriminator based on 3D convolutions

O Explored several “tips&tricks”

O No batch normalisation in A
the last step, LeakyRelu, no e aean arie

Adam optimiser &

hidden dense layers @, a"

O Batch training

O Combined cross entropy



Some generated images
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Image validation

O Energy distribution in single cells £ Average
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O Using DL techniques for fast simulation is profitable if training time is
not a bottleneck

O Depending on the use case retraining might be necessary

O Hyper-parameters scan and meta-optimization

O 3D generative adversarial networks are not “out-of-the-box”
O Complex fraining process

O Our modelis currently based on keras + tensorflow (no MPII)



Prototype on multi-nodes

O Thanks to a collaboration with the CINECA center, Italy and Intel,

we have access to a cluster of Xeon Phi interconnected with Intel
Omni-Path

O Implement model in Intel optimized Caffe* and link to Intel MLSL
and Intel MKL-DNN

O Needs fixes in Intel Caffe*

O Measure scaling and hotspots on single Xeon Phi and clusters



Summary & Plan

First results are very promising!

Detailed assessment of current performance & optimisation
Generalisation to different detectors

Comparison to other DL fechniques (recurrent networks)

Looking forward to test upcoming Intel software & hardware solutions!

O Switch fo Neon as soon as v3.0 is available

O Next-generation Intel® Xeon® processor family “Skylake” and next
generation of Intel Xeon Phi processors “Knights Mill”

O Testinference dedicated hardware (integrated FPGA solution) Intel DLIA



Thank you




