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Monte Carlo Simulation: Why
¤ Detailed simulation of subatomic particles is essential for 
data analysis, detector design

¤ Understand how detector design affect 
measurements and physics

¤ Use simulation to correct for inefficiencies, 
inaccuracies, unknowns.

¤ The theory models to compare data against.
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A good simulation demonstrates that we understand the detectors 
and the physics we are studying



The problem
¤ Complex physics and geometry modeling

¤ Some physics process are extremely rare!
¤ Heavy computation requirements, massively CPU-bound
¤ Already now more than 50% of WLCG power is used for simulations
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By 2025 with the High Luminosity LHC run we will have to run simulation 100x faster!

200 Computing centers in 20 countries: > 600k cores

@CERN (20% WLCG): 65k processor cores ; 30PB disk + >35PB tape storage 



GeantV: Adapting simulation to modern 
hardware

Classical 
simulation
hard to approach 
the full machine 
potential

GeantV
simulation
needs to profit at 
best from all 
processing 
pipelines

• Single event scalar 
transport

• Embarrassing 
parallelism

• Cache coherence – low
• Vectorization – low 

(scalar auto-
vectorization)

• Multi-event vector 
transport

• Fine grain parallelism
• Cache coherence – high
• Vectorization – high 

(explicit multi-particle 
interfaces)
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Some benchmarks on Intel Xeon Phi
¤ GeantV delivers already a part of the 

expected performance

¤ Testing geometry navigation 
performance wrt classical

¤ Full detector simulation (LHC CMS)
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LCD Calorimeter
• CLIC is a proposed CERN project for a linear accelerator of electrons and positrons to TeV 

energies (~ LHC for protons) 

• Not a real experiment yet, so we) can simulate data and make it public.  

• Simpler geometry than ATLAS…  

• The LCD calorimeter is an array of absorber material and silicon sensors  comprising the 
most granular calorimeter design available  

• Data is essentially a 3D image 

• So far several million Pi0, Elec, ChPi, Gamma. 10 to 510 GeV. Low energy and Jet 
samples planned. 

• ECAL (25x25x25) / HCAL (5x5x60) “window”. Aux info: Energy, …  

• First studies, π
0

 vs γ classification with various DNNs by summer students.  

• Code/results not collected… but should be easy to redo. 

• New version of dataset.  

• Some visualization code exists… Full running example in CaloDNN. 

• Many interesting problems: PID Classification, Energy Regression, Shower generative 
models. 

The LCD calorimeter
• CLIC is a CERN project for a linear 

accelerator of electrons and 
positrons to TeV energies (~ LHC for 
protons) 

• The LCD is the detector design 
associated to the project 

• The LCD calorimeter is an array of 
absorber material and silicon 
sensors 

• So far, the most granular (i.e., more 
“pixels”) calorimeter design 
available 
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A long way to an optimal network architecture
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• From this first exercise, 
we still have sizeable 
improvement margin 
ahead 

• Planning for an 
extended 
hyperparameter 
optimization on the 
CSCS cluster in Lugano 

• Starting to work on 
regressions in parallel, 
with CERN/Caltech 
Summer students 

Calorimetry in one slide
• Most particles hitting a dense material develop a 

shower of particles  

• In this stochastic process, they loose energy, which 
is transmitted to the material 

• Properly instrumenting the material, this energy can 
be collected as an electronic signal and converted 
into an energy measurement 

• The shape of the shower is related to the nature of 
the particle 

• calorimeter fragmented in cells to allow particle 
identification from shower shape 

• each cell is a volume in space associated to an 
energy deposit

Electromagnetic 
shower (e, γ)

Hadronic shower 
(π, Κ, p, n, ..)
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Going beyond 10x: fast simulation
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¤ In the best case scenario GeantV will give 10x speedup → not 
enough

¤ Improved, efficient and accurate fast simulation based on Deep 
Learning techniques 

Test on most 
time consuming 
detectors: 
calorimeters



Generative Adversarial Networks
¤ Mostly used for computer vision 

(Goodfellow et al, 2014)

¤ Simultaneously train two models: 

¤ Generative model G to capture the 
data distribution

¤ Discriminative model D to distinguish 
real data from G data (“catch G”) 

¤ The training procedure for G is to 
maximize the probability of D making a 
mistake
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arXiv:1406.2661v1 

Particle label



Training GANs is a many steps process:
1. Sample noise and generate images with 

the Generator. 

2. Tthe Discriminator to recognize Generator 
data from Real data.

3. Push the chained Generator and 
Discriminator to tell you that it is Real 
data. 

I. Discriminator weights are frozen. 

4. Back feed to Discriminator and repeat for 
as many epochs as needed

http://www.rricard.me/machine/learning/generative/adversarial/networks/2017/04/05/
gans-part1.html



3D GAN for particle detectors
¤ Treat energy deposits in cells as 3D image

¤ Generator and Discriminator based on 3D convolutions

¤ Explored several “tips&tricks”
¤ No batch normalisation in 

the last step, LeakyRelu, no 
hidden dense layers 😀 , 
Adam optimiser ☹

¤ Batch training
¤ Combined cross entropy 



Some generated images
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Geant4
GAN generated

Shower longitudinal section

Shower transverse section

¤ First results look very promising!

¤ Qualitative results show no 
collapse problem

GAN generated electron



Image validation

¤ Cell energy standard deviation is underestimated 
by GAN
¤ Set up higher level criteria for image validation

¤ Energy distribution in single cells Average

StdDev
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Training time ?

¤ Using DL techniques for fast simulation is profitable if training time is 
not a bottleneck

¤ Depending on the use case retraining might be necessary

¤ Hyper-parameters scan and meta-optimization 

¤ 3D generative adversarial networks are not “out-of-the-box”

¤ Complex training process

¤ Our model is currently based on keras + tensorflow (no MPI!)

12



Prototype on multi-nodes
¤ Thanks to a collaboration with the CINECA center, Italy and Intel,  

we have access to a cluster of Xeon Phi interconnected with Intel 
Omni-Path

¤ Implement model in Intel optimized Caffe* and link to Intel MLSL 
and Intel MKL-DNN

¤ Needs fixes in Intel Caffe*

¤ Measure scaling and hotspots on single Xeon Phi and clusters



Summary & Plan
¤ First results are very promising!

¤ Detailed assessment of current performance  & optimisation

¤ Generalisation to different detectors

¤ Comparison to other DL techniques (recurrent networks) 

¤ Looking forward to test upcoming Intel software & hardware solutions!
¤ Switch to Neon as soon as v3.0 is available

¤ Next-generation Intel® Xeon® processor family “Skylake” and next 
generation of Intel Xeon Phi processors “Knights Mill”

¤ Test inference dedicated hardware (integrated FPGA solution) Intel DLIA



Thank you
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