

Machine Learning for (fast) simulation

Sofia Vallecorsa for the GeantV team

Monte Carlo Simulation: Why

Detailed simulation of subatomic particles is essential for data analysis, detector design

- Understand how detector design affect measurements and physics
- Use simulation to correct for inefficiencies, inaccuracies, unknowns.
- The theory models to compare data against.

A good simulation demonstrates that we understand the detectors and the physics we are studying

The problem

- Complex physics and geometry modeling
 - Some physics process are extremely rare!
- Heavy computation requirements, massively CPU-bound
- Already now more than 50% of WLCG power is used for simulations

200 Computing centers in 20 countries: > 600k cores

@CERN (20% WLCG): 65k processor cores ; 30PB disk +>35PB tape storage

By 2025 with the High Luminosity LHC run we will have to run simulation 100x faster!

GeantV: Adapting simulation to modern hardware

•

interfaces)

Classical simulation hard to approach the full machine

potential

- Single event scalar
 transport
- Embarrassing
 parallelism
- Cache coherence low
- Vectorization low (scalar autovectorization)

GeantV simulation

needs to profit at best from all processing pipelines Multi-event vector transport Fine grain parallelism Cache coherence - high Vectorization – high (explicit multi-particle

Some benchmarks on Intel Xeon Phi

Going beyond 10x: fast simulation

- In the best case scenario GeantV will give his transmitted to the material enough
- Improved, efficient and accurate fast simulation based on beep this energy be collected as an electronic signal and convinto an energy measurement

 The shape of the shower is related to me name the strict most

Calorimetry in

- time consuming calorimeter fragmented in cells to allow particular detectors: from shower shape
- each cell is a volume in space associated energy deposit

6

bp

Generative Adversarial Networks

- Mostly used for computer vision (Goodfellow et al, 2014)
- Simultaneously train two models:
 - Generative model G to capture the data distribution
 - Discriminative model D to distinguish real data from G data ("catch G")
- The training procedure for G is to maximize the probability of D making a mistake

arXiv:1406.2661v1

Training GANs is a many steps process:

- 1. Sample noise and generate images with the Generator.
- 2. The Discriminator to recognize Generator data from Real data.
- 3. Push the chained Generator and Discriminator to tell you that it is Real data.
 - I. Discriminator weights are frozen.
- 4. Back feed to Discriminator and repeat for as many epochs as needed

http://www.rricard.me/machine/learning/generative/adversarial/networks/2017/04/05/ gans-part1.html

3D GAN for particle detectors

Treat energy deposits in cells as 3D image
 Generator and Discriminator based on 3D convolutions

Explored several "tips&tricks"

- No batch normalisation in the last step, LeakyRelu, no hidden dense layers e, Adam optimiser
- Batch training
- Combined cross entropy

Some generated images

- First results look very promising!
- Qualitative results show no collapse problem

Image validation

Energy distribution in single cells

Cell energy standard deviation is underestimated by GAN

Set up higher level criteria for image validation

Training time ?

- Using DL techniques for fast simulation is profitable if training time is not a bottleneck
 - Depending on the use case retraining might be necessary
 - Hyper-parameters scan and meta-optimization
 - 3D generative adversarial networks are not "out-of-the-box"
 - Complex training process
 - Our model is currently based on keras + tensorflow (no MPI!)

Prototype on multi-nodes

- Thanks to a collaboration with the CINECA center, Italy and Intel, we have access to a cluster of Xeon Phi interconnected with Intel Omni-Path
- Implement model in Intel optimized Caffe* and link to Intel MLSL and Intel MKL-DNN
 - Needs fixes in Intel Caffe*
- Measure scaling and hotspots on single Xeon Phi and clusters

Summary & Plan

- First results are very promising!
- Detailed assessment of current performance & optimisation
- Generalisation to different detectors
- Comparison to other DL techniques (recurrent networks)
- Looking forward to test upcoming Intel software & hardware solutions!
 - Switch to Neon as soon as v3.0 is available
 - Next-generation Intel® Xeon® processor family "Skylake" and next generation of Intel Xeon Phi processors "Knights Mill"
 - Test inference dedicated hardware (integrated FPGA solution) Intel DLIA

Thank you

