
A high-performance portable abstract interface for explicit
SIMD vectorization.

P. Karpiński
CERN, the European Organization for Nuclear Research

CH-1211 Geneva 23
przemyslaw.karpinski@cern.ch

J. McDonald
National University of Ireland

Maynooth, Ireland
johnmcd@cs.nuim.ie

Abstract
�is work establishes a scalable, easy to use and e�cient approach
for exploiting SIMD capabilities of modern CPUs, without the need
for extensive knowledge of architecture speci�c instruction sets.
We provide a description of a new API, known as UME::SIMD, which
provides a �exible, portable, type-oriented abstraction for SIMD
instruction set architectures. Requirements for such libraries are
analysed based on existing, as well as proposed future solutions. A
so�ware architecture that achieves these requirements is explained,
and its performance evaluated. Finally we discuss how the API �ts
into the existing, and future so�ware ecosystem.

CCS Concepts •�eory of computation→ Parallel comput-
ing models; •Computer systems organization → Single in-
struction, multiple data; •So�ware and its engineering →
Concurrent programming structures; So�ware libraries and
repositories;

Keywords SIMD, C++, Vectorization, Portability, Abstract Inter-
face
ACM Reference format:
P. Karpiński and J. McDonald. 2017. A high-performance portable abstract
interface for explicit SIMD vectorization.. In Proceedings of PMAM’17, Austin,
TX, USA, February 04-08 2017, 10 pages.
DOI: h�p://dx.doi.org/10.1145/3026937.3026939

1 Introduction
�is paper provides details of the Uni�ed Multi/Many-Core Envi-
ronment (UME), an experimental framework to establish a scalable
and easy to use system to assist developers in exploiting upcom-
ing multi- and manycore CPU architectures. �e �nal framework
will consist of a number of separate modules, each dealing with
a separate aspect of modern CPU architectures, however in this
paper we focus on UME::SIMD, which speci�cally addresses the
issue of SIMD vectorization. UME::SIMD allows the programmer
to access the SIMD capabilities of modern CPU’s, without the need
for extensive knowledge of architecture speci�c instruction sets.
�is is achieved by de�ning a set of abstract vector types together
with a wide set of architecture independent operations to allow
portability, decrease the learning curve and to provide a concise
and complete model for vectorization.

�e internal performance component of the library is imple-
mented using vendor speci�c extensions to the C++ programming
language, so called compiler intrinsic functions. Given that C++ is

Publication rights licensed to ACM. ACM acknowledges that this contribution was
authored or co-authored by an employee, contractor or a�liate of a national govern-
ment. As such, the Government retains a nonexclusive, royalty-free right to publish
or reproduce this article, or to allow others to do so, for Government purposes only.
PMAM’17, Austin, TX, USA
© 2017 Copyright held by the owner/author(s). Publication rights licensed to ACM.
978-1-4503-4883-6/17/02. . .$15.00
DOI: h�p://dx.doi.org/10.1145/3026937.3026939

a language with a mature compiler infrastructure, we demonstrate
that generic compiler optimizations ensure that a negligible over-
head is introduced by this abstraction. For non-SIMD CPU’s the
library provides a default implementation of the interface that is
developed using standard C++ language only.

2 Background
2.1 Vectorization in Commodity CPU’s
Vectorization in computing is not a new topic with the technology
already applied for more than 50 years. �e basic idea behind vec-
torization is to allow operations not only on scalars (single-value
variables), but also on vectors (1-D arrays of scalars), matrices (2-D
arrays of scalars) and even higher order primitives. Vectorization
has two basic advantages: simpli�ed mathematical notation and
increased performance. �e �rst is related to the representation
of algebraic formulas, where formulas use vectors and matrices
as entities for simplifying expressions and providing a canonical
abstract notation. Secondly, since there are no �ow dependencies
between elements of vector primitives, there exists a hypotheti-
cal possibility of executing certain operations (e.g. vector-vector
addition) in parallel on all scalar elements of such a primitive. Fur-
thermore because of data locality this will result in a decrease of
the overall latency of the computational process [6]. An interesting
mathematical formulation of vector processing primitives has been
presented by Iverson [14].

In order to achieve higher performance, vector operations re-
quire additional hardware resources. Until mid-90’s vectorization
machinery was limited to supercomputers howeverm relatively
recently, a similar although limited, set of capabilities became a
part of consumer level commodity CPU’s. �e most advanced CPU
vectorization technology is a set of SIMD extensions for the x86
instruction set architecture (ISA) developed by Intel. �ese instruc-
tion sets started as the MMX instruction set [20], a small number
of highly specialized instructions allowing operation on multiple
scalar elements using 64b registers. Due to a very restricted in-
struction set the range of potential applications was limited to
multimedia or highly specialized primitive math functions (e.g. im-
plementations of standard libraries or compression algorithms).
�e second family of extensions called SSE (Streaming SIMD Exten-
sions) has been introduced, with vector registers extended to 128b,
and additional instructions. In recent years a third extension called
Advanced Vector Extensions (AVX) was presented, broadening fur-
ther the vector registers to 256b (for �oating point operations). It
was then followed-up with AVX2 which added, 256b integer oper-
ations and gather operations. �e AVX-512 extension, currently
the state-of-the-art, doubles the size of vector registers to 512b,
introduces independent mask registers and adds con�ict detection
instructions, gather/sca�er instructions, prefetching instructions,
reciprocal/exponential approximation instructions, and others [5].



PMAM’17, February 04-08 2017, Austin, TX, USA P. Karpiński and J. McDonald

�e biggest issue of the new extension set is that it is fragmented
into speci�c sub-extensions (AVX512-Foundation, AVX512-Con�ict
Detection, AVX512-Vector Length, etc.) making portability more
di�cult even when dealing with di�erent CPUs manufactured by
the same company. Apart from multiple extensions developed by
Intel, there are also other SIMD technologies in CPUs from other
manufacturers, such as ARM - NEON instruction set [2], Cell - SPU
[10] or IBM - AltiVec [11].

While each of these SIMD instruction set extensions promise
performance gain (e.g. up to 16x against scalar code for AVX-
512), programming for a particular instruction set heavily limits
application portability. Various gaps in the available instruction
sets, such as AVX512 fragmentation, lead to poor e�ciency or very
time consuming workarounds. Finally any potential user requires
a detailed knowledge of the behaviour of all instruction set that the
developed so�ware requires, which prolongs the learning process
and increases so�ware complexity.

Programming languages are an interface between a conceptual,
mathematical notation and underlying computer hardware archi-
tecture. On one hand they constrain the formal mathematical spec-
i�cation so that solutions are expressed unambiguously, on the
other, they provide, portability over hardware architectures. A
broad range of array languages such as APL[14], Fortran[12], or
Cilk Plus[3] already provide a rich syntax for expressing algorithms
using array notations or vector primitives. However, such support
is not present in more mainstream languages such as C++ [22].
Support for vectorization within C++ has already been proposed
multiple times, by independent contributors [7] [19] [17], however
none of these proposals have been accepted by the standardisation
commi�ee thus far.

As explained in Section 1, the aim of this work is to create
an abstraction that would allow programmers to increase their
productivity, but without signi�cant sacri�ces in performance or
portability. We selected C++ as our language of choice, because
of its popularity, typeset programming capabilities and a mature
tool-chains. At the same time we also believe that the proposed
typeset model can be implemented at compilers level to enable
similar capabilities in other languages. We thus present a typeset
model, a C++ template library and evaluation of its’ performance
on state-of-art microprocessors. We also present an intuitive and
easy to learn API aiming for so�ware development productivity.

2.2 Prior Work
C++ compilers, such as: GNU Compiler Collection, Intel C++ Com-
piler, Visual Studio Compiler and Clang, provide multiple di�erent
ways of generating vector instructions:

• Auto-vectorization - as described in [18] using this method
the performance of the resulting output is highly variable.

• Explicit vectorization using compiler directives - an
example can be OpenMP [4] which o�ers a set of portable
standardised clauses for SIMD vectorization.

• Explicit vectorization using compiler intrinsic func-
tions - this approach is very similar to assembly program-
ming, yet it allows some compiler optimizations.

Work done by Kretz and Lindenstruth on the VC library is the
closest work to that presented in this paper. It has already been
discussed why explicit vectorization using compiler intrinsics is
an appealing approach, that it leads to signi�cant speedups over

auto-vectorization, addresses code readability and positively a�ects
learning curve [18]. In VC library any vector type derives its’
rank (number of elements in binary representation) and available
interface from its base scalar type. However mask types are not
universal, but rather depend on the vector type used. �e vector
rank is implied by the instruction set used and cannot be controlled
by the user. �e library also provides implementation for basic
math functions such as trigonometric, exponential and FMA (Fused
Multiply and Add) operations.

Similar work has been done also by A. Fog on VCL library [8].
As in VC, VCL de�nes a set of vector types, and mask types which
create an abstract interface allowing the users to write C++ standard
code. �is hides intrinsic functions and exposes vector operations in
a user-friendly manner. �e major di�erence with VC is a model of
vectorization using three parameters: scalar type, scalar precision
rank and length of a vector to determine unambiguously a vector
type. While the library provides higher ease of use, it also explicitly
prohibits user from using ine�cient operations, which leads to
non-portable code.

A portable, virtual vector instruction set was also presented by
Bocchino and Adve on LLVA[21]. �is and similar representations
are suitable for intermediate compiler representations, as well as
for virtual execution environments. For languages such as C++
where no vectorization support is provided, creating a mapping
between available language constructs and such virtual ISA, is pos-
sible only with some compiler dependant extensions or by relying
on auto-vectorization. As a result modi�cation to existing compiler
infrastructure might be required. In addition to infrastructural
problems, also the set of operations for such vector abstraction
should be extended to be used not only in media applications, but
for any future so�ware.

3 UME::SIMD Interface
In this section we present details of the UME::SIMD interface. �e
interface is a C++ 11 compatible programming API and consists of
two parts:
• A set of SIMD data types abstracting vector register types

(e.g. XMM, YMM, ZMM for AVXx extensions), and,
• A set of operations permi�ed on these data types.

�e library uses 3-parametric model to unambiguously distin-
guish data types:
• scalar category one of boolean, unsigned integer, signed

integer, �oating point and index.
• scalar rank number of bits of precision used to represent

a scalar value, that is: 8b, 16b, 32b, 64b.
• vector rank (length) number of scalar elements packed in

a SIMD vector.

3.1 Primitive types
�e simplest and most basic category of types distinguished in the
library is a mask (SIMDMask[RANK]). A mask type, similarly as
in VC or VCL is a vector of boolean elements, with one major dif-
ference: in UME::SIMD the mask types are de�ned as independent
of the vector types that they interact with. �e mask is de�ned
purely with regard to the vector length. �e reason for that is that
in instruction sets preceding AVX512 there was no concept of a
mask register, and all mask operations were only permi�ed with
another vector register used as the masking operand. Types used



A high-performance portable abstract interface for explicit SIMD vectorization. PMAM’17, February 04-08 2017, Austin, TX, USA

for representing masks in SSEx and AVX/AVX2 are not uniform and
depend on the instruction used. To avoid additional mask conver-
sions when mixing both integer/�oating point operations, both VC
and VCL de�ne separate mask types for every vector type. When
considering AVX512 this behavior is unnecessary and unintuitive.

�e second basic data type, an index vector (SIMDSwizzle[RANK]),
is an experimental data type for representing permutations and
element reordering. In simplest implementation, a swizzle index
scalar can be an unsigned integer value ranging from zero to vec-
tor length (RANK). A swizzle vector could be then represented
using an unsigned integer vector. However since the permutation
operands change for both instruction sets, vector types and even
single CPU instructions, separate representations for index vectors
are required.

�e third class of data types are arithmetic vectors (SIMD-
Vec[RANK] [BASE SCALAR]). which are used for majority of data
manipulation operations. �e library de�nes types necessary for
representing up to 1024b arithmetic vectors. Supported vector
ranks (for both arithmetic, swizzle and mask vectors) are natural
numbers in range <1, 128 >, which allows representation of both
SIMDVec1 x (i.e. SIMD types containing only one element) and
SIMDVec128 x (i.e. since 128 is the number of 8b elements that
can be packed in 1024b vector). While no currently available ISA
extension supports 1024b vector registers, the value was chosen
to prove scalability of the interface. Summarizing, the interface
de�nes: 8 mask types, 8 swizzle types and 63 arithmetic vector
types.

3.2 Primitive operations
�e second part of the interface is the de�nition of operations
permi�ed on di�erent SIMD types. Each operation has been de�ned
formally in a way that makes its result compatible with equivalent
C++ 11 code. Table 2 shows an example of the formal de�nition
for the MADDV operation.

�e complete interface has been divided into speci�c classes de-
pending on the category of permi�ed vector types: (mask, swizzle,
signed/unsigned integer or �oat) and vector length (PACK/UNPACK
operations). In total the interfaces de�ne more than 300 operations
including:

• operation between mask types (e.g. boolean AND/OR),
• basic arithmetic operations (e.g. addition, multiplication),
• reduction operations (e.g. HADD - add all vector elements

and return a scalar value),
• bitwise operations between vectors (e.g. binary AND, binary

OR),
• swizzle operations (e.g. SWIZZLE - permute elements of a

vector, BLEND - mix content of two vectors),
• pack operations (e.g. PACK - assemble vector with a vector

of half-length),
• additional math functions (e.g. SIN - calculate sine, MIN -

select minimum of two values),
• fused arithmetic (e.g. FMADD - fused multiply and add).

�e implementation groups speci�c types of operations into
sub-interfaces which can then be inherited by vector types. A full
diagram of the interface hierarchy is shown in Figure 1. �e full
list of operations is available online at project website [16].

�e majority of operations, permi�ed on arithmetic vector types,
are also available in masked versions. Additionally, some operations

are also implemented in ’in-place’ assignment form to mimic the
behaviour of assignment operators, such as: ’+=’, ’*=’, etc.

Operator overloading for vector types is a very important feature,
with both VC and VCL de�ning overloaded operators, to expose
functionality of intrinsics in an intuitive manner via C++. Vector
types require an additional operand for representing the operation
mask. Unfortunately the language does not allow overloading of a
ternary operator, and thus, another approach to representing an
operation has to be used. Consider function de�nition at Figure 2.
�e function takes 3 vector arguments of type SIMD4 64f (vectors
of four 64b �oating point scalars), and returns a fused multiply
and add result. �is function uses pre�x notation in the context
of the member function interface (MFI). Member functions, here
mul and add take one explicit vector argument, and one implicit
argument (a this object). With overloaded operators, the same
function can be represented as on Figure 3. Clearly this notation is
easier to comprehend. Unfortunately, the masked version can only
be represented correctly with additional argument, which makes it
impossible to use, even overloaded, operator syntax (Figure 4).

Seemingly a syntactic detail, this notation is necessary for mask
propagation through whole chain of operations, without the need to
rely on code generation level compiler optimizations. A simpli�ed
syntax using write masks used in VC and available in UME::SIMD
allows masking only the last operation evaluated that is an assign-
ment (Figure 5). �e syntax of this construct is similar to one
present in std::valarray [13].

Regardless of syntax problems, the MFI provides a �exible method-
ology for exposing a wide set of functionality of the underlying
hardware, without exposing the implementation details to the user.
Usage of operators is still allowed in cases where it is possible, to
facilitate so�ware development.

Besides MFI and operator syntax, it is also possible to use a
namespace scoped non-member functions to access required oper-
ations, as presented on Figure 6.

3.3 Adaptability
A number of features allowing scalability such as: uniform mask/swizzle
types, extensibility of vector lengths and de�nition of MFI have
already been discussed. From the long-term perspective, it is im-
portant to allow extensibility of the interface in terms of new in-
struction sets and new MFI operations. �e biggest issue in API
design is that it is not possible to predict what types of operations
might be available in future instruction sets, and what operations
might be necessary for performance optimizations. �is concern is
important in terms of long-running scienti�c projects that have to
undergo periodic hardware changes, without extensive so�ware
modi�cations, and for which optimization is a life-long process.

To provide maximum capability, the supported interface must be
a superposition of interfaces exposed by all supported instruction
sets. As a consequence the full implementation of the existing
interface for a new instruction set can take signi�cant amount of
time. While an interface that is too extensive might be a burden
to both develop and maintain, a comprehensive interface allow
problems such as the e�cient implementation for both RISK and
CISC architectures to be addressed.

For maximum portability and �exibility, a scalar emulation engine
was designed. �e advantage of this approach is that it provides a set
of default fall back routines and creates a compatibility veri�cation
mechanism. �e scalar emulation engine uses static polymorphism



PMAM’17, February 04-08 2017, Austin, TX, USA P. Karpiński and J. McDonald

Table 1. Results of UME::SIMD microbenchmarks on Xeon E3-1280 processor. �e values show speedup against a reference con�guration:
best result obtained with optimized (also auto-vectorized) scalar code. Results limited by specialized code availability.

ICC 17.0 Clang 3.9 GCC 5.3
scalar AVX2 UME::SIMD scalar AVX2 UME::SIMD scalar AVX2 UME::SIMD

Microbenchmark intrinsics intrinsics intrinsics
Single �oating-point precision (32b)

average 1.00 6.90 8.01 0.97 7.07 7.92 1.64 6.84 7.95
exp 1.00 - 1.23 2.81 - 1.64 0.78 - 0.49
log 1.00 - 1.03 0.49 - 0.15 0.10 - 0.10
histogram2 1.00 0.89 1.01 1.23 1.10 1.36 1.49 1.52 1.49
mandelbrot2 1.00 5.71 6.48 1.00 5.72 6.57 0.98 5.76 6.35
polynomial 1.00 4.35 4.34 0.59 3.14 3.18 0.62 3.23 3.19
�adraticSolver 1.00 5.13 5.26 1.00 5.23 5.26 0.89 - 4.63
sincos 1.00 - 0.79 1.15 - 0.35 0.10 - 0.11

Double �oating-point precision (64b)
average 1.00 3.62 4.16 0.97 3.67 4.42 1.67 3.62 4.42
exp 1.00 - 0.95 1.84 - 1.11 0.61 - 0.60
log 1.00 - 2.15 1.86 - 0.91 0.24 - 0.23
histogram2 1.00 0.82 1.01 1.11 0.88 1.11 1.46 1.32 1.44
mandelbrot2 1.00 - 2.94 0.98 - 3.21 0.98 - 2.23
polynomial 1.00 3.58 3.64 0.56 1.97 1.97 0.58 2.01 2.02
�adraticSolver 1.00 - 1.83 0.94 - 1.60 0.96 - 5.16
sincos 1.00 - 2.63 2.77 - 2.19 0.46 - 0.46

Figure 1. Taxonomy of types in UME::SIMD. Di�erent operations are permi�ed on di�erent data types.

to feed a �nal SIMD type with a full de�nition of MFI which is exe-
cuted in the case where no specialized version of a given function
is explicitly provided for the given vector type. Scalar emulation
provides the following bene�ts to the library design:

• allows testing design choices without writing di�cult and
error prone intrinsic code

• provides an extensible so�ware architecture for extending
interfaces with new operations

• provides an easy alternative version for ISA’s not supporting
speci�c operations

• creates a reference for testing results generated for any
vector ISA



A high-performance portable abstract interface for explicit SIMD vectorization. PMAM’17, February 04-08 2017, Austin, TX, USA

Table 2. Formal de�nition of MADDV operation. Because of mem-
ber function abstract interface, one of the operands is implicit.

MADDV - Masked addition between two vectors

Signature:

VEC T add (
MASK T const & mask,
VEC T const & vectorOp )

Parameters: mask: used for element selection
vectorOp: explicit vector operand

Returns: Temporary vector object (temp)
Behaviour: �is method performs SIMD addition of

operands from caller (*this) and from
vector speci�ed as vectorOp.
�e following holds true for all index values
in the range<0; VEC LEN-1>:

IF mask[i] == true THEN
temp[i] <- vec[i] + op[i]

ELSE
temp[i] <- vec[i]

ENDIF

Figure 2. FMA primitive using Member-function (pre�x syntax).
SIMD4 64f fma(

SIMD4 64f & a,
SIMD4 64f & b,
SIMD4 64f & c)

{
return a.add(b.mul(c));

}

Figure 3. FMA primitive using overloaded operator (post�x syn-
tax).

SIMD4 64f fma(
SIMD4 64f & a,
SIMD4 64f & b,
SIMD4 64f & c)

{
return a + b * c;

}

Figure 4. FMA primitive using masking (pre�x syntax).
SIMD4 64f fma(

SIMDMask4 & mask,
SIMD4 64f & a,
SIMD4 64f & b,
SIMD4 64f & c)

{
return a.add(mask, b.mul(mask, c));

}

• is implemented using C++ 11 standard language and hence
should port easily to new targets, even if supported ISA are
not present.

Figure 5. FMA primitive using masking (mask-assignment syntax).
SIMD4 64f fma(

SIMDMask4 & mask,
SIMD4 64f & a,
SIMD4 64f & b,
SIMD4 64f & c)

{
SIMD4 64f temp;
temp[mask] = a + b * c;
return temp;

}

Figure 6. FMA primitive using masking (C-like function syntax).
SIMD4 64f fma(SIMDMask4 & mask,

SIMD4 64f & a,
SIMD4 64f & b,
SIMD4 64f & c)

{
SIMD4 64f temp = add(mask, a, mul(b, c));
return temp;

}

3.4 SIMD-1
�e majority of basic, well de�ned operations (in terms of the core
standard language) are permissible on vector types. However, some
operations, such as mask operations or reduction operations, never
had any purpose in scalar codes (except for boolean predicates and
array indices, which again are limited to scalar entities). For that
reason it is not possible to write generic template code using either
scalar or SIMD vector types. SIMD-1 is a special SIMD rank that in
practice creates an encapsulation of scalar elements, but which also
supports the MFI interface. With SIMD-1 types it is possible to write
generic code that can be then compiled to either scalar or vectorized
code. Because there is no need to use specialized intrinsic functions
and since compilers are already very good at optimizing trivial
scalar code, usually the result of SIMD-1 operations is equivalent
to regular scalar code executed. Hence the use of SIMD-1 types
removes the need for specialized scalar versions of the code. It also
permits the generic optimization rules to be also applied for code
executed on scalar machines, or in cases when speci�c workloads
would degrade the performance when higher SIMD ranks are used.

3.5 Type info
SIMD data types can be used with template metaprogramming
techniques. Such techniques usually require additional type infor-
mation. An example here would be information about other corre-
lated types that might be necessary in algorithm code. UME::SIMD
de�nes a set of trait template classes (SIMDTraits<T>) that al-
low accessing, at compile time, additional type information. �is
feature is necessary to limit the number of template parameters in
templated code and to make type dependencies easier to compre-
hend.

3.6 Type conversions
Creating an unambiguous, consistent and closed type system re-
quires precise de�nition of relations between di�erent types of
vectors. In the UME::SIMD typeset there are three types of conver-
sions available:



PMAM’17, February 04-08 2017, Austin, TX, USA P. Karpiński and J. McDonald

• concatenating and spli�ing
• precision promotion
• fundamental type change

Concatenating (PACK) or spli�ing (UNPACK) operations are
necessary for modifying vector rank that is used during vector
operations. �is type of operations might be necessary for solving
problems with �ow dependencies between vector elements. Preci-
sion promotions (PROMOTE and DEMOTE) are operations that
do not change the rank of a SIMD vector, but change the preci-
sion of packed scalars. Fundamental type changing conversions
(UTOI, ITOU, UTOF, FTOU, ITOF, FTOI) are the conversions
that change between: signed/unsigned integer and �oating point
types. When performing this type of conversions both scalar preci-
sion and vector rank are preserved. Figure 7 illustrates the possible
type conversions for SIMD4 32i (a) and SIMD1 32i (b) types. Null-
Type is a special termination type used for conversions that don’t
have a correct semantic meaning (e.g. unpacking rank 1 vectors).
Null types can be used in templated code for de�ning boundary
scenarios.

3.7 Programming Model
UME::SIMD does not impose any programming model on the user
code, other than one imposed by vector arithmetic. �e library does
not use any non-static context, does not require runtime initial-
ization and does not require any additional linking. It is provided
purely as a set of header �les de�ning a namespace (UME::SIMD::)
which contains all SIMD types and operations. �e types can be
then used in standard user code in exactly the same manner as
regular scalar variables.

A suggested usage consists of writing kernels (functions) of
vectorized code with data layouts managed by the calling code. In
other words, UME::SIMD can act as an instruction-level generation
mechanism to obtain �ne-grained instruction generation, to replace
mechanisms provided by current C++ compilers.

4 Performance
UME::SIMD is a library intended for achieving highly e�cient code
kernels. �e evaluation we are presenting here consists of two
parts: synthetic microbenchmarks and a real-world usage scenario.
�e microbenchmarks are used primarily for performance mon-
itoring at a granularity of speci�c interface operations, such as:
trigonometric functions, fused multiply-add operations or con�ict
detection. For the real-world usage scenario, the library has been
integrated into the GeantV project [1] at CERN. GeantV is a new
version of highly parallel detector simulation framework, with a
variety of potential applications in areas including: High Energy
Physics (HEP), medicine, aeronautics and others. Integration of
UME::SIMD as a critical so�ware component in a project of this
scale creates a unique possibility to direct the development of the
library based on user requirements and feedback.

When performing such evaluation, multiple factors have to be
taken into consideration. First of all, the quality of code generated
depends heavily on the compiler. Monitoring di�erent toolchains
as they evolve is necessary for ensuring that portability is not
impacted negatively. Second, we are interested in �nding sets of
compilation �ags to make sure that compilers don’t break the per-
formance by unwanted optimizations. �ird, the codes heavily

dependent on runtime information might not be e�ciently imple-
mented with the existing interface, and therefore might require
interface extension. Finally, we would like to compare our new
solution to existing implementation technologies, which requires
additional code infrastructure and also highly e�cient, specialized
implementations.

In order to make the data presentation clear, we present aggre-
gation of selected measurements for speci�c static and runtime
con�gurations. We also present the results only for representatives
of Xeon and Xeon Phi processor families. It is not our intention to
perform a comparison between these platforms. Such comparison
shouldn’t be performed at kernel level but rather at the level of the
actual working application. Since both UME::SIMD and GeantV
projects are in development phase, such comparison is not yet
possible. We are therefore interested in showing performance com-
parison between di�erent implementation methodologies, such
as auto-vectorized scalar code, vector intrinsic functions and VC
library.

Tables 1 and 3 aggregate the results for Xeon E3-1280 and for
Xeon Phi 7120P respectively. For both platforms we performed set
of measurements testing di�erent con�gurations of optimization
�ags which we observed to a�ect vectorization e�ciency, such
as: optimization level, vector instructions extension and inlining
parameterization. Over 50 di�erent con�gurations have been tested,
each of them with proper task pinning, multiple replications on both
task and process levels, and results averaging to reach statistically
reliable results. Full measurements for the most recent version are
available at the project website [15].

Eight microbenchmarks, selected based on frequent usage scenar-
ios, are presented with values obtained using di�erent compilers.
For Xeon Phi, current instabilities in Clang compiler tool-chain
forced us to disable a range of a�ected con�gurations. For higher
mathematical functions we are not presenting results for the intrin-
sic codes due to the lack of availability of proper implementations.
We are hoping to �ll these gaps in future microbenchmarking ef-
forts. For di�erent implementations we also selected only the best
possible result achieved with scalar code, vector intrinsics and with
UME::SIMD speci�c code. �e results presented do not necessarily
belong to the same static con�guration.

A number of conclusions can be drawn from the performance
values presented in the tables . First of all there is a signi�cant
variability between di�erent compilers, and compiler versions. �e
quality of code generated with UME::SIMD in the majority of cases
matches or even exceeds the intrinsic code. In some con�gurations,
mostly related to 64b precision, we expect even be�er results as
both the library and compilers development progress. A second
observation is that scalar code can actually be faster in some scenar-
ios, for instance when gather/sca�er con�icts appear. �e biggest
issues are that some of these scenarios heavily depend on the work-
load. For that reason it is not possible to tell whether vectorization
will improve or decrease performance. �e implications of this
point for projects using vectorization, is that proper performance
monitoring should be a process performed continuously during
the project development. A �nal observation is that in certain
cases UME::SIMD reaches performance higher than theoretically
expected due to pu�ing more pressure on registers and micropro-
cessor ports. �is approach creates a potential for parameterized
application tuning, without the need for code re-writes.



A high-performance portable abstract interface for explicit SIMD vectorization. PMAM’17, February 04-08 2017, Austin, TX, USA

Figure 7. Diagrams of type conversions for selected types: a) SIMD4 32i has all conversions well de�ned; b) SIMD1 8i supports only
semantically valid type conversions.

Table 3. Results of UME::SIMD microbenchmarks on Xeon Phi 7120P processor. �e values show speedup against a reference con�guration:
best result obtained with optimized (also auto-vectorized) scalar code. Results limited by specialized code availability.

ICC 17.0 GCC 6.2
scalar AVX512 UME::SIMD scalar AVX512 UME::SIMD

Microbenchmark intrinsics intrinsics
Single �oating-point precision (32b)

average 1.00 8.67 9.78 1.00 10.03 10.56
exp 1.00 - 1.01 0.01 - 0.01
log 1.00 - 1.01 0.02 - 0.02
histogram2 1.00 0.53 1.03 0.19 0.54 0.61
mandelbrot2 1.00 13.90 18.35 1.02 13.29 18.93
polynomial 1.00 15.79 15.86 0.67 14.97 15.46
�adraticSolver 1.00 14.50 15.43 0.85 14.37 14.80
sincos 1.00 - 1.00 0.04 - 0.04

Double �oating-point precision (64b)
average 1.00 5.84 4.76 1.00 6.62 5.08
exp 1.00 - 44.39 1.25 - 1.26
log 1.00 - 9.25 0.16 - 0.16
histogram2 1.00 0.55 0.38 0.24 0.52 0.24
mandelbrot2 1.00 6.76 10.76 1.03 6.50 10.89
polynomial 1.00 7.57 8.21 0.65 7.52 7.86
�adraticSolver 1.00 9.07 9.12 0.89 8.95 8.92
sincos 1.00 - 11.41 0.18 - 0.18

Further to the above it is also worth considering the code size
requirements. While it is not always a good metric to be used when
evaluating programmer performance, it is in this case as we are
dealing with assembly-like intrinsics kernels, heavily dependent on
ISA and CPU model. For intrinsic implementations, due to name
C-style name mangling, separate implementations are required for
both di�erent instruction sets, as well as di�erent scalar precision.
For AVX/AVX2/AVX512 and pure x86 codes only, implemented
for both single and double precision, the UME::SIMD code was
roughly 8 times smaller than equivalent intrinsic code. �is is
due to the fact that the UME::SIMD typeset uses both template

metaprogramming for precision selection and concise type-oriented
design to ensure a uniform interface. �is allows parameterization
which in turn reduces e�ective code size. We hope that the existing
set of microbenchmarks can be used in near future for evaluation
of vectorization e�ciency also on ARM and Power architecture
based processors, without much porting e�orts.

For the realistic benchmarking scenarios, we used a set of exist-
ing real-world benchmarks designed to test basic volume shapes
usable as building blocks for high-energy physics (HEP) detector
simulation. In practical cases the size and geometry of a full detec-
tor depends on a wide range of parameters, such as: particle types,



PMAM’17, February 04-08 2017, Austin, TX, USA P. Karpiński and J. McDonald

energy deposition, density of particles in a speci�c volume etc. �is
forces the frameworks such as GeantV to o�er high freedom in
parameterization of the shapes. At the same time, there exists a
need for continuous monitoring of the performance. �e shape
benchmarks have been de�ned so that each of them exposes an
interface consisting of 6 functions to be used in higher level code:
Inside, Contains, DistanceToIn, DistanceToOut, SafetyToIn
and SafetyToOut. Each of these functions evaluates a relation
between a given particle (e.g. an electron) and a speci�c volume
primitive placed in detector space. For example DistanceToIn
gives a positive value describing absolute distance of the particle
to the surface of given shape. �ese functions have been chosen
for benchmarking, as they correspond to the interface exposed by
the previous generation of simulators.

�e GeantV project uses an explicit vector programming ap-
proach, and de�nes an abstraction layer (VecCore) mapping to
di�erent explicit vectorization backends. At the moment three
backends are supported: scalar, VC and UME::SIMD. Each backend
de�nes a set of primitive operations, such as MaskedAssign for
blending operations or Exp for exponent. �ese backend agnostic
operations then map to speci�c functionality exposed by di�erent
libraries, or to a generic scalar code. At the same time further room
for performance improvement is le� so that specialized implementa-
tions can be provided without the VecCore abstraction. �is design
choice had been made to allow future incremental performance
improvements.

GeantV de�nes a set of 18 shape benchmarks, each of them
measuring the time necessary for evaluating all six functions over
a number of particles where the representation exceeds the pro-
cessor cache size. �e particles are generated randomly but with
constraints on the distribution of particle position and momentum.
�e constraints have been selected by framework developers to
a resemble the con�guration of a known real simulation environ-
ment.

We are primarily interested in generating a comparison between
UME::SIMD and the VC library, which is considered the state of
art solution. We are also interested in knowing what is the vector-
ization e�ciency of shape implementations. �e full benchmark
set we evaluated consisted of measuring all possible combinations
over the following se�ings:

• Backend selection: scalar, VC, UME::SIMD
• compilation �ags: various selections of -O2/O3, disabled

vectorization (Intel compiler only)/ AVX2/
AVX512, -�nline-limit, -fno-streaming-stores
• c++ 11 compatible compilers: GCC(5.3), ICC(17.0), Clang(3.9)
• all 6 functions of 18 shape benchmarks

All measurements were performed with multiple replications
on task and process level and with proper platform con�guration.
We ran the same set of con�gurations and benchmarks on a Xeon
E3-1280 platform and a Xeon Phi 7120 platform (see Tables 4 and
5, respectively). A single build con�guration consists of 108 inde-
pendent measurement values. For Xeon the list of con�gurations
consists of 31 build con�gurations, whilst for Xeon Phi the con�gu-
rations with Clang are disabled due to broken tool-chain. To make
a presentation of the results more readable, we calculated a set of
derived metrics which allow us to further limit the comparison to
only few selected con�gurations. �e selection was made based on
the highest geometric mean of speedups reached for each of the

framework backends. Given early stage of implementation it was
necessary to disable certain ine�cient kernels from our compari-
son.

For an AVX2 based platform (see Table 4) both VC and UME::SIMD
score high on the geometric mean metric. It is important to under-
stand, that while the expected vectorization speedup would be 4x
for double precision measurements, the reference con�guration is
already well auto-vectorized using SSEx instructions, which cannot
be fully disabled. �is suggests that real vectorization e�ciency for
both libraries might lie in proximity of theoretical peak. We would
like to state that both VC and UME::SIMD are under on-going de-
velopment and still have room for performance improvement. For
that reason the results presented should get be�er over the time
for both libraries.

For AVX512 platform (see Table 5) the measurements again show
similar level of performance between both libraries. In this case
however the speedup, even compensated with the knowledge about
partial auto-vectorization of reference con�guration, suggests that
there is still room for quality improvement. We also observed a
number of very small performance degradations when switching
between scalar and SIMD instruction generation schemes.

It is worth pointing out that the generic nature of GeantV back-
end system uses only a fraction of the UME::SIMD interface, with
SIMD lengths selected based on target architecture. In contrast
almost all of the interface exposed by VC is used, making this com-
parison only partial. �e possibility for vertical vectorization is
thus not exploited in this benchmarking comparison. Furthermore,
from the functional perspective the quality of UME::SIMD interface
and its robustness is already on a par with VC (in the part that
is possible to be compared), whilst at the same time UME::SIMD
provides a simpli�ed programming model.

5 Supported Instruction Sets
Supported instruction sets in UME::SIMD currently include AVX,
AVX2, AVX512 and IMCI. Proof of concept implementations are
already present for NEON and AltiVec instruction sets. �e library
provides also an implementation using OpenMP 4.0, which might
serve in the future as a methodology for performance portability on
unsupported, yet standard compliant platforms. We hope to present
similar benchmarking also for these in a follow-up publications.

6 Licensing
Ensuring scalable performance on both existing and future CPU’s
is widely achievable requires API’s that not only provide open in-
tuitive interfaces. Such API’s should also ensure that the interface
exposed provides an abstraction to the user that is relatively simple,
even though the underlying implementation can grow very com-
plex as the variety of SIMD capable CPU’s increase. Maintaining
a uni�ed interface will require incorporating new architectures
and vectorization extensions which we believe is best achieved
by allowing users to use and extend the API under a permissive
licensing structure. For this reason we have published the library
[16] under an MIT license. �is permits its use by any project, for
academic, industrial or amateur applications, without any further
obligations from or towards the project owners.



A high-performance portable abstract interface for explicit SIMD vectorization. PMAM’17, February 04-08 2017, Austin, TX, USA

Table 4. Results of GeantV shape benchmarks on Xeon E3-1280 processor. �e values show aggregated speedups against a reference
con�guration: scalar backend, intel compiler, ’-no-vec -O2’ compilation �ags. All calculations using double precision.

ICC 17.0 Clang 3.9 Clang 3.9 Clang 3.9
scalar backend scalar backend VC backend UME::SIMD backend

Derived metric -no-novec -O2 -march=avx2 -O2 -march=avx2 -O2 -march=avx2 -O3
# of best results 0 15 45 5
# of results in top 5% 0 19 53 9
# of results in top 20% 1 22 59 43
# of results <1x 0 24 0 0
Geomean of speedup (65 kernels) 1.00 1.38 2.24 1.92

Table 5. Results of GeantV shape benchmarks on Xeon Phi 7120 processor. �e values show aggregated speedups against a reference
con�guration: scalar backend, intel compiler, ’-no-vec -O2’ compilation �ags. All calculations using double precision.

ICC 17.0 GCC 6.2 GCC 6.2 GCC 6.2
scalar backend scalar backend VC backend UME::SIMD backend

Derived metric -no-novec -O2 -march=knl -O3 -march=knl -O3 -march=knl -O2
# of best results 0 13 16 37
# of results in top 5% 0 13 26 38
# of results in top 20% 0 14 38 43
# of results <1x 0 34 0 6
Geomean of speedups (65 kernels) 1.00 1.30 2.29 2.32

7 Future work
Multiple directions can be taken in order to build upon this work.
One approach, would be to extended the interface with additional,
domain speci�c operations. By forking the implementation and de-
veloping domain algorithms as MFI functions, and next specializing
them for all necessary architectures the users can obtain additional
simpli�cations for dedicated applications and/or computing envi-
ronments.

Another approach would be do develop specialized support for
other architectures. Additional support for both processors and
coprocessors would result in developing uniform code basis which
could work in heterogeneous environments, without need for mul-
tiple separate implementations.

�e specialized implementation can be also provided by means
of already existing, standard technologies such as OpenCL (vec-
tor types) [9] or OpenMP (#pragma simd) [4]. Both extensions
are very appealing due to the fact that they o�er code generation
schemes without the need for architecture speci�c code develop-
ment. Both standards are also widely recognized and for that reason
the users can expect them to be supported by hardware vendors
even if non-standard extensions (for instance intrinsics) become
obsolete. While the longevity of these approaches can be ensured,
the code generation quality relies on compilers and for that reason
the control over kernels’ performance cannot be guaranteed.

8 Summary
�is paper describes a new API, known as UME::SIMD, which
o�ers a �exible, portable, type-oriented abstraction for SIMD in-
struction set architectures. By designing a �exible interface it is
possible to quickly add specialized operations, tuned for speci�c
target architectures. Scalar emulation of all vector types creates
a C++ compatible reference for comparing results obtained using
non-standard intrinsic operations on di�erent architectures. It also

allows incremental implementation of SIMD types for new instruc-
tion sets, without breaking existing codes. Extending the set of
types available in C++ with abstract vector types shows promising
performance improvements for both scalar and vector micropro-
cessors. Benchmarking results show that improvements can be
achieved even for SIMD ranks other than native rank of under-
lying vector registers. �is creates an opportunity for additional
parametric tuning of applications.

By ensuring compatibility with a standard API across a variety of
architectures, it is possible to achieve both compiler and hardware
portability. Addition of SIMD-1 types gives the unique opportunity
for comparison with e�ciency of equivalent scalar code without the
need for code duplication. Furthermore, by implicitly meeting vec-
torization requirements, SIMD-1 aids compiler auto-vectorization
capabilities. For non-vectorizable workloads, SIMD-1 provides a
necessary mechanism which allows reverting from SIMD execution
to scalar execution mode.

By maintaining a uniform interface over all SIMD types, vector
types can be used in generative programming techniques. �ese
techniques can then be used for selection of optimal vector rank
and precision in dedicated kernels of code. Such techniques can
be used for �ne tuning of code targeting di�erent platforms. Such
generative programming techniques are not easily implemented
using intrinsic functions directly due to incoherent call conventions
between di�erent instruction sets.

We also presented extensive set of measurements showing the
performance quality of the library in comparison to state-of-art
VC library, and intrinsic kernels. In both cases the library o�ers
simpli�cation over the programming model without performance
losses, and with increase in programmer productivity.

Acknowledgments
�e authors would like to thank all the users for feedback without
which no so�ware could never reach its proper quality.



PMAM’17, February 04-08 2017, Austin, TX, USA P. Karpiński and J. McDonald

We would also like to thank all the reviewers for constructive
feedback we could use to improve both the quality of this paper
and the so�ware presented here.

We would like to thank Intel Corporation for contiguous support
in technical aspects required during preparation of our so�ware,
and for its involvement in the ICE-DIP project.

ICE-DIP is a European Industrial Doctorate project funded by the
European Community’s 7th Framework Programme Marie-Curie
Actions under grant PITN-GA-2012-316596.

References
[1] J. Apostolakis, M. Bandieremonte, G. Bitzes, R. Brun, P. Canal, F. Carminatio, G.

Cosmo, J. C. De Fine Licht, L. Duchem, V. D. Elviera, A. Gheata, S. Y. Jun, G. Lima,
T. Nikitina, M. Novak, R. Sehgal, O. Shadura, and S. Wenzel. 2015. Towards a
high performance geometry library for particle-detector simulations. In Journal
of Physics: Conference Series (Volume: 608, Number:1). IOP Publishing.

[2] ARM. 2007-2015. ARM Compiler toolchain, Version 5.0: Assembler Reference.
(2007-2015). h�p://infocenter.arm.com

[3] R. Asai and A. Vladimirov. 2015. Intel Cilk Plus for complex parallel algorithms. In
Parallel Computing (Volume: 48, Issue: C). Elsevier, Amsterdam, �e Netherlands.

[4] OpenMP Architecture Review Board. 2013. OpenMP Application Programming
Interface. (2013). h�p://www.openmp.org/mp-documents/OpenMP4.0.0.pdf

[5] Intel Corp. 2010. A guide to Vectorization with Intel® C++ Com-
pilers. (2010). h�ps://so�ware.intel.com/sites/default/files/m/4/8/8/2/a/
31848-CompilerAutovectorizationGuide.pdf

[6] P. Carini Dz-Ching R. Ju, Chuan-Lin Wu. 1994. �e Classi�cation, Fusion, and
Parallelization of Array Language Primitives. In IEEE Transcations on parallel
and distributed systems, vol. 5, no. 10,.

[7] P. Esterie, M. Gaunard, and J. Falcou. 2013. N3571: A Proposal to add Single
Instruction Multiple Data Computation to the Standard Library. (2013). h�ps:
//isocpp.org/files/papers/n3571.pdf

[8] A. Fog. 2016. VCL: C++ vector class library. (2016). h�p://www.agner.org/
optimize/vectorclass.pdf

[9] Khronos OpenCL Working Group. 2008. �e OpenCL Speci�cation. (2008).
h�ps://www.khronos.org/registry/cl/specs/opencl-1.0.29.pdf

[10] M. Gschwind, H.P. Hofstee, B. Flachs, M. Hopkins, Y. Watanabe, and Y. Yamazaki.
2006. Synergistic Processing in Cell’s Multicore Architecture. In Micro, IEEE
(Volume: 26 Issue: 2). Los Alamitos, CA, USA.

[11] IBM. 2013. IBM Power ISA, Version 2.07. (2013). www.power.org
[12] ISO/IEC. 2010. ISO/IEC WD1539-1 Programming Languages - Fortran. (2010).

h�p://www.j3-fortran.org/doc/year/10/10-007.pdf
[13] ISO/IEX. 2014. Information technology - Programming languages - C++ (ISO/IEC

14882:2014). International Standard Speci�cation. (Dec. 2014).
[14] Kenneth E. Iverson. 1962. A Programming Language. Wiley.
[15] P. Karpiński. 2016. UME::SIMD benchmark results. (2016). h�ps://bitbucket.org/

edanor/umesimd/wiki/Microbenchmark%20results
[16] P. Karpiński. 2016. UME::SIMD library overview. (2016). h�ps://bitbucket.org/

edanor/umesimd
[17] M. Kretz. 2013. N3759: SIMD Vector Types, A proposal to C++ standardization

Commi�ee. (2013). h�p://www.open-std.org/jtc1/sc22/wg21/docs/papers/2013/
n3774.pdf

[18] M. Kretz and V. Lindenstruth. 2012. VC: A C++ library for explicit vectorization.
In So�ware-Practice I& Experience (Volume: 42, Issue: 11). Wiley, New York, USA.

[19] A. Naumann and S. Wenzel. 2013. N3774: C++ Needs Language Support For
Vectorization. (2013). h�p://www.open-std.org/jtc1/sc22/wg21/docs/papers/
2013/n3774.pdf

[20] A. Peleg and U. Weiser. 1996. MMX Technology Extension to the Intel Architec-
ture. In Microm, IEEE (Volume: 16 Issue: 4). Los Alamitos, CA, USA.

[21] V. S. Adve R.L.Bocchino Jr. 2006. Vector LLVA: A Virtual Vector Instruction Set
for Media Processing. In VEE ’06 Proceedings of the 2nd international conference
on virtual execution environments. ACM, New York, USA.

[22] B. Stroustrup. �e C++ Programming Language (4th ed.). Addison-Wesley.

http://infocenter.arm.com
http://www.openmp.org/mp-documents/OpenMP4.0.0.pdf
https://software.intel.com/sites/default/files/m/4/8/8/2/a/31848-CompilerAutovectorizationGuide.pdf
https://software.intel.com/sites/default/files/m/4/8/8/2/a/31848-CompilerAutovectorizationGuide.pdf
https://isocpp.org/files/papers/n3571.pdf
https://isocpp.org/files/papers/n3571.pdf
http://www.agner.org/optimize/vectorclass.pdf
http://www.agner.org/optimize/vectorclass.pdf
https://www.khronos.org/registry/cl/specs/opencl-1.0.29.pdf
www.power.org
http://www.j3-fortran.org/doc/year/10/10-007.pdf
https://bitbucket.org/edanor/umesimd/wiki/Microbenchmark%20results
https://bitbucket.org/edanor/umesimd/wiki/Microbenchmark%20results
https://bitbucket.org/edanor/umesimd
https://bitbucket.org/edanor/umesimd
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2013/n3774.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2013/n3774.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2013/n3774.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2013/n3774.pdf

	Abstract
	1 Introduction
	2 Background
	2.1 Vectorization in Commodity CPU's
	2.2 Prior Work

	3 UME::SIMD Interface
	3.1 Primitive types
	3.2 Primitive operations
	3.3 Adaptability
	3.4 SIMD-1
	3.5 Type info
	3.6 Type conversions
	3.7 Programming Model

	4 Performance
	5 Supported Instruction Sets
	6 Licensing
	7 Future work
	8 Summary
	Acknowledgments
	References

